

retworkx Documentation

Contents:

	retworkx
	Installing retworkx
	Installing on a platform without precompiled binaries

	Building from source
	Develop Mode

	Using retworkx

	Retworkx API
	Graph Classes
	retworkx.PyGraph

	retworkx.PyDiGraph

	retworkx.PyDAG

	Generators
	retworkx.generators.cycle_graph

	retworkx.generators.directed_cycle_graph

	retworkx.generators.path_graph

	retworkx.generators.directed_path_graph

	retworkx.generators.star_graph

	retworkx.generators.directed_star_graph

	retworkx.generators.mesh_graph

	retworkx.generators.directed_mesh_graph

	retworkx.generators.grid_graph

	retworkx.generators.directed_grid_graph

	Random Circuit Functions
	retworkx.directed_gnp_random_graph

	retworkx.undirected_gnp_random_graph

	retworkx.directed_gnm_random_graph

	retworkx.undirected_gnm_random_graph

	Algorithm Functions
	Specific Graph Type Methods

	Universal Functions

	Exceptions
	retworkx.InvalidNode

	retworkx.DAGWouldCycle

	retworkx.NoEdgeBetweenNodes

	retworkx.DAGHasCycle

	retworkx.NoSuitableNeighbors

	retworkx.NoPathFound

	retworkx.NullGraph

	Return Iterator Types
	retworkx.BFSSuccessors

	retworkx.NodeIndices

	retworkx.EdgeList

	retworkx.WeightedEdgeList

	Release Notes
	0.8.0
	Prelude

	New Features

	Bug Fixes

	0.7.2
	Bug Fixes

	0.7.1

	0.7.0
	New Features

	Upgrade Notes

	Fixes

	0.6.0
	New Features

	Upgrade Notes

	Fixes

	0.5.0
	New Features

	Fixes

	0.4.0
	New Features

	Upgrade Notes

	Fixes

	Contributing Guide
	Contributing to retworkx
	Tests

	Style

	Building documentation

	Release Notes

	retworkx for networkx users
	Some Key Differences

	Graph Data and Attributes
	Nodes

	Edges

	Attributes

	Examining elements of a graph

	API Equivalents
	Class Constructors

	Graph Modifiers

	Functionality Gaps

retworkx

[image: License]
 [https://opensource.org/licenses/Apache-2.0][image: Build Status]
 [https://travis-ci.com/Qiskit/retworkx][image:]
 [https://github.com/Qiskit/retworkx/releases][image:]
 [https://pypi.org/project/retworkx/][image: Coverage Status]
 [https://coveralls.io/github/Qiskit/retworkx?branch=master][image: Minimum rustc 1.39]
 [https://rust-lang.github.io/rfcs/2495-min-rust-version.html]
	You can see the full rendered docs at:
https://retworkx.readthedocs.io/en/latest/index.html

retworkx is a general purpose graph library for python3 written in Rust to
take advantage of the performance and safety that Rust provides. It was built
as a replacement for qiskit [https://qiskit.org/]‘s previous (and current)
networkx usage (hence the name) but is designed to provide a high
performance general purpose graph library for any python application. The
project was originally started to build a faster directed graph to use as the
underlying data structure for the DAG at the center of
qiskit-terra [https://github.com/Qiskit/qiskit-terra/]‘s transpiler, but it
has since grown to cover all the graph usage in Qiskit and other applications.

Installing retworkx

retworkx is published on pypi so on x86_64, i686, ppc64le, s390x, and
aarch64 Linux systems, x86_64 on Mac OSX, and 32 and 64 bit Windows
installing is as simple as running:

pip install retworkx

This will install a precompiled version of retworkx into your python
environment.

Installing on a platform without precompiled binaries

If there are no precompiled binaries published for your system you’ll have to
build the package from source. However, to be able able to build the package
from the published source package you need to have rust >=1.39 installed (and
also cargo [https://doc.rust-lang.org/cargo/] which is normally included with
rust) You can use rustup [https://rustup.rs/] (a cross platform installer for
rust) to make this simpler, or rely on
other installation methods [https://forge.rust-lang.org/infra/other-installation-methods.html].
A source package is also published on pypi, so you still can also run the above
pip command to install it. Once you have rust properly installed, running:

pip install retworkx

will build retworkx for your local system from the source package and install
it just as it would if there was a prebuilt binary available.

Building from source

The first step for building retworkx from source is to clone it locally
with:

git clone https://github.com/Qiskit/retworkx.git

retworkx uses PyO3 [https://github.com/pyo3/pyo3] and
setuptools-rust [https://github.com/PyO3/setuptools-rust] to build the
python interface, which enables using standard python tooling to work. So,
assuming you have rust installed, you can easily install retworkx into your
python environment using pip. Once you have a local clone of the repo, change
your current working directory to the root of the repo. Then, you can install
retworkx into your python env with:

pip install .

Assuming your current working directory is still the root of the repo.
Otherwise you can run:

pip install $PATH_TO_REPO_ROOT

which will install it the same way. Then retworkx is installed in your
local python environment. There are 2 things to note when doing this
though, first if you try to run python from the repo root using this
method it will not work as you expect. There is a name conflict in the
repo root because of the local python package shim used in building the
package. Simply run your python scripts or programs using retworkx
outside of the repo root. The second issue is that any local changes you
make to the rust code will not be reflected live in your python environment,
you’ll need to recompile retworkx by rerunning pip install to have any
changes reflected in your python environment.

Develop Mode

If you’d like to build retworkx in debug mode and use an interactive debugger
while working on a change you can use python setup.py develop to build
and install retworkx in develop mode. This will build retworkx without
optimizations and include debuginfo which can be handy for debugging. Do note
that installing retworkx this way will be significantly slower then using
pip install and should only be used for debugging/development.

It’s worth noting that pip install -e does not work, as it will link the python
packaging shim to your python environment but not build the retworkx binary. If
you want to build retworkx in debug mode you have to use
python setup.py develop.

Using retworkx

Once you have retworkx installed you can use it by importing retworkx.
All the functions and graph classes are off the root of the package.
For example, building a DAG and adding 2 nodes with an edge between them
would be:

import retworkx

my_dag = retworkx.PyDAG(cycle_check=True)
add_node(), add_child(), and add_parent() return the node index
The sole argument here can be any python object
root_node = my_dag.add_node("MyRoot")
The second and third arguments can be any python object
my_dag.add_child(root_node, "AChild", ["EdgeData"])

Retworkx API Reference

Graph Classes

	retworkx.PyGraph([multigraph])

	A class for creating undirected graphs

	retworkx.PyDiGraph([check_cycle, multigraph])

	A class for creating directed graphs

	retworkx.PyDAG([check_cycle, multigraph])

	A class for creating direct acyclic graphs.

Generators

	retworkx.generators.cycle_graph([num_nodes, …])

	Generate an undirected cycle graph

	retworkx.generators.directed_cycle_graph([…])

	Generate a cycle graph

	retworkx.generators.path_graph([num_nodes, …])

	Generate an undirected path graph

	retworkx.generators.directed_path_graph([…])

	Generate a directed path graph

	retworkx.generators.star_graph([num_nodes, …])

	Generate an undirected star graph

	retworkx.generators.directed_star_graph([…])

	Generate a directed star graph

	retworkx.generators.mesh_graph([num_nodes, …])

	Generate an undirected mesh graph where every node is connected to every other

	retworkx.generators.directed_mesh_graph([…])

	Generate a directed mesh graph where every node is connected to every other

	retworkx.generators.grid_graph([rows, cols, …])

	Generate an undirected grid graph.

	retworkx.generators.directed_grid_graph([…])

	Generate a directed grid graph. The edges propagate towards right and

Random Circuit Functions

	retworkx.directed_gnp_random_graph(…[, seed])

	Return a \(G_{np}\) directed random graph, also known as an Erdős-Rényi graph or a binomial graph.

	retworkx.undirected_gnp_random_graph(…[, seed])

	Return a \(G_{np}\) random undirected graph, also known as an Erdős-Rényi graph or a binomial graph.

	retworkx.directed_gnm_random_graph(…[, seed])

	Return a \(G_{nm}\) of a directed graph

	retworkx.undirected_gnm_random_graph(…[, seed])

	Return a \(G_{nm}\) of an undirected graph

Algorithm Functions

Specific Graph Type Methods

	retworkx.bfs_successors(graph, node, /)

	Return successors in a breadth-first-search from a source node.

	retworkx.dag_longest_path(graph, /)

	Find the longest path in a DAG

	retworkx.dag_longest_path_length(graph, /)

	Find the length of the longest path in a DAG

	retworkx.number_weakly_connected_components(…)

	Find the number of weakly connected components in a DAG.

	retworkx.weakly_connected_components(graph, /)

	Find the weakly connected components in a directed graph

	retworkx.is_weakly_connected(graph, /)

	Check if the graph is weakly connected

	retworkx.is_directed_acyclic_graph(graph, /)

	Check that the PyDiGraph or PyDAG doesn’t have a cycle

	retworkx.is_isomorphic(first, second, /)

	Determine if 2 graphs are structurally isomorphic

	retworkx.is_isomorphic_node_match(first, …)

	Determine if 2 DAGs are isomorphic

	retworkx.topological_sort(graph, /)

	Return the topological sort of node indexes from the provided graph

	retworkx.descendants(graph, node, /)

	Return the descendants of a node in a graph.

	retworkx.ancestors(graph, node, /)

	Return the ancestors of a node in a graph.

	retworkx.lexicographical_topological_sort(…)

	Get the lexicographical topological sorted nodes from the provided DAG

	retworkx.graph_distance_matrix(graph, /[, …])

	Get the distance matrix for an undirected graph

	retworkx.digraph_distance_matrix(graph, /[, …])

	Get the distance matrix for a directed graph

	retworkx.floyd_warshall(dag, /)

	Return the shortest path lengths between ever pair of nodes that has a path connecting them

	retworkx.graph_floyd_warshall_numpy(graph, /)

	Find all-pairs shortest path lengths using Floyd’s algorithm

	retworkx.digraph_floyd_warshall_numpy

	Find all-pairs shortest path lengths using Floyd’s algorithm

	retworkx.collect_runs(graph, filter)

	Collect runs that match a filter function

	retworkx.layers(dag, first_layer, /)

	Return a list of layers

	retworkx.digraph_adjacency_matrix(graph, /)

	Return the adjacency matrix for a PyDiGraph object

	retworkx.graph_adjacency_matrix(graph, /[, …])

	Return the adjacency matrix for a PyGraph class

	retworkx.graph_all_simple_paths

	Return all simple paths between 2 nodes in a PyGraph object

	retworkx.digraph_all_simple_paths

	Return all simple paths between 2 nodes in a PyDiGraph object

	retworkx.graph_astar_shortest_path(graph, …)

	Compute the A* shortest path for a PyGraph

	retworkx.digraph_astar_shortest_path(graph, …)

	Compute the A* shortest path for a PyDiGraph

	retworkx.graph_dijkstra_shortest_paths

	Find the shortest path from a node

	retworkx.digraph_dijkstra_shortest_paths

	Find the shortest path from a node

	retworkx.graph_dijkstra_shortest_path_lengths(…)

	Compute the lengths of the shortest paths for a PyGraph object using Dijkstra’s algorithm

	retworkx.digraph_dijkstra_shortest_path_lengths(…)

	Compute the lengths of the shortest paths for a PyDiGraph object using Dijkstra’s algorithm

	retworkx.graph_k_shortest_path_lengths(…)

	Compute the length of the kth shortest path

	retworkx.digraph_k_shortest_path_lengths(…)

	Compute the length of the kth shortest path

	retworkx.graph_greedy_color(graph, /)

	Color a PyGraph using a largest_first strategy greedy graph coloring.

	retworkx.cycle_basis(graph, /[, root])

	Return a list of cycles which form a basis for cycles of a given PyGraph

	retworkx.strongly_connected_components(graph, /)

	Compute the strongly connected components for a directed graph

	retworkx.graph_dfs_edges(graph, /[, source])

	Get edge list in depth first order

	retworkx.digraph_dfs_edges(graph, /[, source])

	Get edge list in depth first order

	retworkx.digraph_find_cycle(graph, /[, source])

	Return the first cycle encountered during DFS of a given PyDiGraph, empty list is returned if no cycle is found

	retworkx.digraph_union(first, second, …)

	Return a new PyDiGraph by forming a union from two input PyDiGraph objects

	retworkx.is_matching(graph, matching, /)

	Check if matching is valid for graph

	retworkx.is_maximal_matching(graph, matching, /)

	Check if a matching is a maximal (not maximum) matching for a graph

	retworkx.max_weight_matching(graph, /[, …])

	Compute a maximum-weighted matching for a PyGraph

Universal Functions

These functions are algorithm functions that wrap per graph object
type functions in the algorithms API but can be run with a
PyGraph, PyDiGraph, or
PyDAG object.

	retworkx.distance_matrix()

	Get the distance matrix for a graph

	retworkx.floyd_warshall_numpy()

	Return the adjacency matrix for a graph object

	retworkx.adjacency_matrix()

	Return the adjacency matrix for a graph object

	retworkx.all_simple_paths()

	Return all simple paths between 2 nodes in a PyGraph object

	retworkx.astar_shortest_path()

	Compute the A* shortest path for a graph

	retworkx.dijkstra_shortest_paths()

	Find the shortest path from a node

	retworkx.dijkstra_shortest_path_lengths()

	Compute the lengths of the shortest paths for a graph object using Dijkstra’s algorithm.

	retworkx.k_shortest_path_lengths()

	Compute the length of the kth shortest path

	retworkx.dfs_edges()

	Get edge list in depth first order

Exceptions

	retworkx.InvalidNode

	

	retworkx.DAGWouldCycle

	

	retworkx.NoEdgeBetweenNodes

	

	retworkx.DAGHasCycle

	

	retworkx.NoSuitableNeighbors

	

	retworkx.NoPathFound

	

	retworkx.NullGraph

	

Return Iterator Types

	retworkx.BFSSuccessors

	A custom class for the return from retworkx.bfs_successors()

	retworkx.NodeIndices

	A custom class for the return of node indices

	retworkx.EdgeList

	A custom class for the return of edge lists

	retworkx.WeightedEdgeList

	A custom class for the return of edge lists with weights

retworkx.PyGraph

	
class PyGraph(multigraph=True, /)

	A class for creating undirected graphs

The PyGraph class is used to create an undirected graph. It can be a
multigraph (have multiple edges between nodes). Each node and edge
(although rarely used for edges) is indexed by an integer id. Additionally,
each node and edge contains an arbitrary Python object as a weight/data
payload. You can use the index for access to the data payload as in the
following example:

import retworkx

graph = retworkx.PyGraph()
data_payload = "An arbitrary Python object"
node_index = graph.add_node(data_payload)
print("Node Index: %s" % node_index)
print(graph[node_index])

Node Index: 0
An arbitrary Python object

The PyDiGraph implements the Python mapping protocol for nodes so in
addition to access you can also update the data payload with:

import retworkx

graph = retworkx.PyGraph()
data_payload = "An arbitrary Python object"
node_index = graph.add_node(data_payload)
graph[node_index] = "New Payload"
print("Node Index: %s" % node_index)
print(graph[node_index])

Node Index: 0
New Payload

	Parameters

	multigraph (bool) – When this is set to False the created PyGraph
object will not be a multigraph (which is the default behavior). When
False if parallel edges are added the weight/weight from that
method call will be used to update the existing edge in place.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__()

	Initialize self.

	add_edge(node_a, node_b, edge, /)

	Add an edge between 2 nodes.

	add_edges_from(obj_list, /)

	Add new edges to the graph.

	add_edges_from_no_data(obj_list, /)

	Add new edges to the graph without python data.

	add_node(obj, /)

	Add a new node to the graph.

	add_nodes_from(obj_list, /)

	Add new nodes to the graph.

	adj(node, /)

	Get the index and data for the neighbors of a node.

	compose(other, node_map, /[, node_map_func, …])

	Add another PyGraph object into this PyGraph

	degree(node, /)

	Get the degree for a node

	edge_list()

	Get edge list

	edges()

	Return a list of all edge data.

	extend_from_edge_list(edge_list, /)

	Extend graph from an edge list

	extend_from_weighted_edge_list(edge_lsit, /)

	Extend graph from a weighted edge list

	from_adjacency_matrix(matrix, /)

	Create a new PyGraph object from an adjacency matrix

	get_all_edge_data(node_a, node_b, /)

	Return the edge data for all the edges between 2 nodes.

	get_edge_data(node_a, node_b, /)

	Return the edge data for the edge between 2 nodes.

	get_node_data(node, /)

	Return the node data for a given node index

	has_edge(node_a, node_b, /)

	Return True if there is an edge between node_a to node_b.

	neighbors(node, /)

	Get the neighbors of a node.

	node_indexes()

	Return a list of all node indexes.

	nodes()

	Return a list of all node data.

	read_edge_list(path, /[, comment, deliminator])

	Read an edge list file and create a new PyGraph object from the contents

	remove_edge(node_a, node_b, /)

	Remove an edge between 2 nodes.

	remove_edge_from_index(edge, /)

	Remove an edge identified by the provided index

	remove_edges_from(index_list, /)

	Remove edges from the graph.

	remove_node(node, /)

	Remove a node from the graph.

	remove_nodes_from(index_list, /)

	Remove nodes from the graph.

	subgraph(nodes, /)

	Return a new PyGraph object for a subgraph of this graph

	to_dot([node_attr, edge_attr, graph_attr, …])

	Generate a dot file from the graph

	update_edge(source, target, /, edge)

	Update an edge’s weight/payload in place

	update_edge_by_index(source, target, /, edge)

	Update an edge’s weight/data payload in place by the edge index

	weighted_edge_list()

	Get edge list with weights

Attributes

	multigraph

	Whether the graph is a multigraph (allows multiple edges between nodes) or not

	
add_edge(node_a, node_b, edge, /)

	Add an edge between 2 nodes.

If multigraph is False and an edge already
exists between node_a and node_b the weight/payload of that
existing edge will be updated to be edge.

	Parameters

	
	node_a (int) – Index of the parent node

	node_b (int) – Index of the child node

	edge – The object to set as the data for the edge. It can be any
python object.

	Returns

	The edge index for the newly created (or updated in the case
of an existing edge with multigraph=False) edge.

	Return type

	int

	
add_edges_from(obj_list, /)

	Add new edges to the graph.

	Parameters

	obj_list (list) – A list of tuples of the form
(node_a, node_b, obj) to attach to the graph. node_a and
node_b are integer indexes describing where an edge should be
added, and obj is the python object for the edge data.

If multigraph is False and an edge already
exists between node_a and node_b the weight/payload of that
existing edge will be updated to be edge. This will occur in order
from obj_list so if there are multiple parallel edges in obj_list
the last entry will be used.

	Returns

	A list of int indices of the newly created edges

	Return type

	list

	
add_edges_from_no_data(obj_list, /)

	Add new edges to the graph without python data.

	Parameters

	obj_list (list) – A list of tuples of the form
(parent, child) to attach to the graph. parent and
child are integer indexes describing where an edge should be
added. Unlike add_edges_from() there is no data payload and
when the edge is created None will be used.

If multigraph is False and an edge already
exists between node_a and node_b the weight/payload of that
existing edge will be updated to be None.

	Returns

	A list of int indices of the newly created edges

	Return type

	list

	
add_node(obj, /)

	Add a new node to the graph.

	Parameters

	obj – The python object to attach to the node

	Returns

	The index of the newly created node

	Return type

	int

	
add_nodes_from(obj_list, /)

	Add new nodes to the graph.

	Parameters

	obj_list (list) – A list of python object to attach to the graph.

	Returns indices

	A list of int indices of the newly created nodes

	Return type

	NodeIndices

	
adj(node, /)

	Get the index and data for the neighbors of a node.

This will return a dictionary where the keys are the node indexes of
the adjacent nodes (inbound or outbound) and the value is the edge data
objects between that adjacent node and the provided node. Note, that
in the case of multigraphs only a single edge data object will be
returned

	Parameters

	node (int) – The index of the node to get the neighbors

	Returns neighbors

	A dictionary where the keys are node indexes and
the value is the edge data object for all nodes that share an
edge with the specified node.

	Return type

	dict

	
compose(other, node_map, /, node_map_func=None, edge_map_func=None)

	Add another PyGraph object into this PyGraph

	Parameters

	
	other (PyGraph) – The other PyGraph object to add onto this
graph.

	node_map (dict) – A dictionary mapping node indexes from this
PyGraph object to node indexes in the other PyGraph object.
The keys are a node index in this graph and the value is a tuple
of the node index in the other graph to add an edge to and the
weight of that edge. For example:

{
 1: (2, "weight"),
 2: (4, "weight2")
}

	node_map_func – An optional python callable that will take in a
single node weight/data object and return a new node weight/data
object that will be used when adding an node from other onto this
graph.

	edge_map_func – An optional python callabble that will take in a
single edge weight/data object and return a new edge weight/data
object that will be used when adding an edge from other onto this
graph.

	Returns

	new_node_ids: A dictionary mapping node index from the other
PyGraph to the equivalent node index in this PyDAG after they’ve
been combined

	Return type

	dict

For example, start by building a graph:

import os
import tempfile

import pydot
from PIL import Image

import retworkx

Build first graph and visualize:
graph = retworkx.PyGraph()
node_a, node_b, node_c = graph.add_nodes_from(['A', 'B', 'C'])
graph.add_edges_from_no_data([(node_a, node_b), (node_b, node_c)])
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'graph.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyGraph_2_0.png]

Then build a second one:

Build second graph and visualize:
other_graph = retworkx.PyGraph()
node_d, node_e = other_graph.add_nodes_from(['D', 'E'])
other_graph.add_edge(node_d, node_e, None)
dot_str = other_graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'other_graph.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyGraph_3_0.png]

Finally compose the other_graph onto graph

node_map = {node_b: (node_d, 'B to D')}
graph.compose(other_graph, node_map)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'combined_graph.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyGraph_4_0.png]

	
degree(node, /)

	Get the degree for a node

	Parameters

	node (int) – The index of the node to find the inbound degree of

	Returns degree

	The inbound degree for the specified node

	Return type

	int

	
edge_list()

	Get edge list

Returns a list of tuples of the form (source, target) where
source and target are the node indices.

	Returns

	An edge list with weights

	Return type

	EdgeList

	
edges()

	Return a list of all edge data.

	Returns

	A list of all the edge data objects in the graph

	Return type

	list

	
extend_from_edge_list(edge_list, /)

	Extend graph from an edge list

This method differs from add_edges_from_no_data() in that it will
add nodes if a node index is not present in the edge list.

If multigraph is False and an edge already
exists between node_a and node_b the weight/payload of that
existing edge will be updated to be None.

	Parameters

	edge_list (list) – A list of tuples of the form (source, target)
where source and target are integer node indices. If the node index
is not present in the graph, nodes will be added (with a node
weight of None) to that index.

	
extend_from_weighted_edge_list(edge_lsit, /)

	Extend graph from a weighted edge list

This method differs from add_edges_from() in that it will
add nodes if a node index is not present in the edge list.

If multigraph is False and an edge already
exists between node_a and node_b the weight/payload of that
existing edge will be updated to be edge. This will occur in order
from obj_list so if there are multiple parallel edges in obj_list
the last entry will be used.

	Parameters

	edge_list (list) – A list of tuples of the form
(source, target, weight) where source and target are integer
node indices. If the node index is not present in the graph,
nodes will be added (with a node weight of None) to that index.

	
static from_adjacency_matrix(matrix, /)

	Create a new PyGraph object from an adjacency matrix

This method can be used to construct a new PyGraph
object from an input adjacency matrix. The node weights will be the
index from the matrix. The edge weights will be a float value of the
value from the matrix.

	Parameters

	matrix (ndarray) – The input numpy array adjacency matrix to create
a new PyGraph object from. It must be a 2
dimensional array and be a float/np.float64 data type.

	Returns

	A new graph object generated from the adjacency matrix

	Return type

	PyGraph

	
get_all_edge_data(node_a, node_b, /)

	Return the edge data for all the edges between 2 nodes.

	Parameters

	
	node_a (int) – The index for the first node

	node_b (int) – The index for the second node

	Returns

	A list with all the data objects for the edges between nodes

	Return type

	list

	Raises

	NoEdgeBetweenNodes – When there is no edge between nodes

	
get_edge_data(node_a, node_b, /)

	Return the edge data for the edge between 2 nodes.

Note if there are multiple edges between the nodes only one will be
returned. To get all edge data objects use
get_all_edge_data()

	Parameters

	
	node_a (int) – The index for the first node

	node_b (int) – The index for the second node

	Returns

	The data object set for the edge

	Raises

	NoEdgeBetweenNodes – when there is no edge between the provided
nodes

	
get_node_data(node, /)

	Return the node data for a given node index

	Parameters

	node (int) – The index for the node

	Returns

	The data object set for that node

	Raises

	IndexError – when an invalid node index is provided

	
has_edge(node_a, node_b, /)

	Return True if there is an edge between node_a to node_b.

	Parameters

	
	node_a (int) – The node index to check for an edge between

	node_b (int) – The node index to check for an edge between

	Returns

	True if there is an edge false if there is no edge

	Return type

	bool

	
multigraph

	Whether the graph is a multigraph (allows multiple edges between
nodes) or not

If set to False multiple edges between nodes are not allowed and
calls that would add a parallel edge will instead update the existing
edge

	
neighbors(node, /)

	Get the neighbors of a node.

This with return a list of neighbor node indices

	Parameters

	node (int) – The index of the node to get the neibhors of

	Returns

	A list of the neighbor node indicies

	Return type

	NodeIndices

	
node_indexes()

	Return a list of all node indexes.

	Returns

	A list of all the node indexes in the graph

	Return type

	NodeIndices

	
nodes()

	Return a list of all node data.

	Returns

	A list of all the node data objects in the graph

	Return type

	list

	
static read_edge_list(path, /, comment=None, deliminator=None)

	Read an edge list file and create a new PyGraph object from the
contents

The expected format for the edge list file is a line seperated list
of deliminated node ids. If there are more than 3 elements on
a line the 3rd on will be treated as a string weight for the edge

	Parameters

	
	path (str) – The path of the file to open

	comment (str) – Optional character to use as a comment by default
there are no comment characters

	deliminator (str) – Optional character to use as a deliminator by
default any whitespace will be used

For example:

import os
import tempfile

from PIL import Image
import pydot

import retworkx

with tempfile.NamedTemporaryFile('wt') as fd:
 path = fd.name
 fd.write('0 1\n')
 fd.write('0 2\n')
 fd.write('0 3\n')
 fd.write('1 2\n')
 fd.write('2 3\n')
 fd.flush()
 graph = retworkx.PyGraph.read_edge_list(path)

Draw graph
dot = pydot.graph_from_dot_data(graph.to_dot())[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyGraph_5_0.png]

	
remove_edge(node_a, node_b, /)

	Remove an edge between 2 nodes.

Note if there are multiple edges between the specified nodes only one
will be removed.

	Parameters

	
	parent (int) – The index for the parent node.

	child (int) – The index of the child node.

	Raises

	NoEdgeBetweenNodes – If there are no edges between the nodes
specified

	
remove_edge_from_index(edge, /)

	Remove an edge identified by the provided index

	Parameters

	edge (int) – The index of the edge to remove

	
remove_edges_from(index_list, /)

	Remove edges from the graph.

Note if there are multiple edges between the specified nodes only one
will be removed.

	Parameters

	index_list (list) – A list of node index pairs to remove from
the graph

	
remove_node(node, /)

	Remove a node from the graph.

	Parameters

	node (int) – The index of the node to remove. If the index is not
present in the graph it will be ignored and this function will
have no effect.

	
remove_nodes_from(index_list, /)

	Remove nodes from the graph.

If a node index in the list is not present in the graph it will be
ignored.

	Parameters

	index_list (list) – A list of node indicies to remove from the
the graph

	
subgraph(nodes, /)

	Return a new PyGraph object for a subgraph of this graph

	Parameters

	nodes (list) – A list of node indices to generate the subgraph
from. If a node index is included that is not present in the graph
it will silently be ignored.

	Returns

	A new PyGraph object representing a subgraph of this graph.
It is worth noting that node and edge weight/data payloads are
passed by reference so if you update (not replace) an object used
as the weight in graph or the subgraph it will also be updated in
the other.

	Return type

	PyGraph

	
to_dot(node_attr=None, edge_attr=None, graph_attr=None, filename=None)

	Generate a dot file from the graph

	Parameters

	
	node_attr – A callable that will take in a node data object
and return a dictionary of attributes to be associated with the
node in the dot file. The key and value of this dictionary must
be a string. If they’re not strings retworkx will raise TypeError
(unfortunately without an error message because of current
limitations in the PyO3 type checking)

	edge_attr – A callable that will take in an edge data object
and return a dictionary of attributes to be associated with the
node in the dot file. The key and value of this dictionary must
be a string. If they’re not strings retworkx will raise TypeError
(unfortunately without an error message because of current
limitations in the PyO3 type checking)

	graph_attr (dict) – An optional dictionary that specifies any graph
attributes for the output dot file. The key and value of this
dictionary must be a string. If they’re not strings retworkx
will raise TypeError (unfortunately without an error message
because of current limitations in the PyO3 type checking)

	filename (str) – An optional path to write the dot file to
if specified there is no return from the function

	Returns

	A string with the dot file contents if filename is not
specified.

	Return type

	str

Using this method enables you to leverage graphviz to visualize a
retworkx.PyGraph object. For example:

import os
import tempfile

import pydot
from PIL import Image

import retworkx

graph = retworkx.undirected_gnp_random_graph(15, .25)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyGraph_6_0.png]

	
update_edge(source, target, /, edge)

	Update an edge’s weight/payload in place

If there are parallel edges in the graph only one edge will be updated.
if you need to update a specific edge or need to ensure all parallel
edges get updated you should use
update_edge_by_index() instead.

	Parameters

	
	source (int) – The index for the first node

	target (int) – The index for the second node

	Raises

	NoEdgeBetweenNodes – When there is no edge between nodes

	
update_edge_by_index(source, target, /, edge)

	Update an edge’s weight/data payload in place by the edge index

	Parameters

	
	edge_index (int) – The index for the edge

	edge (object) – The data payload/weight to update the edge with

	Raises

	NoEdgeBetweenNodes – When there is no edge between nodes

	
weighted_edge_list()

	Get edge list with weights

Returns a list of tuples of the form (source, target, weight) where
source and target are the node indices and weight is the
payload of the edge.

	Returns

	An edge list with weights

	Return type

	WeightedEdgeList

retworkx.PyDiGraph

	
class PyDiGraph(check_cycle=False, multigraph=True, /)

	A class for creating directed graphs

The PyDiGraph class is used to create a directed graph. It can be a
multigraph (have multiple edges between nodes). Each node and edge
(although rarely used for edges) is indexed by an integer id. Additionally
each node and edge contains an arbitrary Python object as a weight/data
payload. You can use the index for access to the data payload as in the
following example:

import retworkx

graph = retworkx.PyDiGraph()
data_payload = "An arbitrary Python object"
node_index = graph.add_node(data_payload)
print("Node Index: %s" % node_index)
print(graph[node_index])

Node Index: 0
An arbitrary Python object

The PyDiGraph implements the Python mapping protocol for nodes so in
addition to access you can also update the data payload with:

import retworkx

graph = retworkx.PyDiGraph()
data_payload = "An arbitrary Python object"
node_index = graph.add_node(data_payload)
graph[node_index] = "New Payload"
print("Node Index: %s" % node_index)
print(graph[node_index])

Node Index: 0
New Payload

The PyDiGraph class has an option for real time cycle checking which can
be used to ensure any edges added to the graph does not introduce a cycle.
By default the real time cycle checking feature is disabled for performance,
however you can enable it by setting the check_cycle attribute to True.
For example:

import retworkx
dag = retworkx.PyDiGraph()
dag.check_cycle = True

or at object creation:

import retworkx
dag = retworkx.PyDiGraph(check_cycle=True)

With check_cycle set to true any calls to PyDiGraph.add_edge() will
ensure that no cycles are added, ensuring that the PyDiGraph class truly
represents a directed acyclic graph. Do note that this cycle checking on
add_edge(), add_edges_from(),
add_edges_from_no_data(),
extend_from_edge_list(), and
extend_from_weighted_edge_list() comes with a performance
penalty that grows as the graph does. If you’re adding a node and edge at
the same time leveraging PyDiGraph.add_child() or
PyDiGraph.add_parent() will avoid this overhead.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__()

	Initialize self.

	add_child(parent, obj, edge, /)

	Add a new child node to the graph.

	add_edge(parent, child, edge, /)

	Add an edge between 2 nodes.

	add_edges_from(obj_list, /)

	Add new edges to the dag.

	add_edges_from_no_data(obj_list, /)

	Add new edges to the dag without python data.

	add_node(obj, /)

	Add a new node to the graph.

	add_nodes_from(obj_list, /)

	Add new nodes to the graph.

	add_parent(child, obj, edge, /)

	Add a new parent node to the dag.

	adj(node, /)

	Get the index and data for the neighbors of a node.

	adj_direction(node, direction, /)

	Get the index and data for either the parent or children of a node.

	compose(other, node_map, /[, node_map_func, …])

	Add another PyDiGraph object into this PyDiGraph

	edge_list

	Get edge list

	edges()

	Return a list of all edge data.

	extend_from_edge_list(edge_list, /)

	Extend graph from an edge list

	extend_from_weighted_edge_list(edge_lsit, /)

	Extend graph from a weighted edge list

	find_adjacent_node_by_edge(node, predicate, /)

	Find a target node with a specific edge

	find_node_by_weight

	Find node within this graph given a specific weight

	from_adjacency_matrix(matrix, /)

	Create a new PyDiGraph object from an adjacency matrix

	get_all_edge_data(node_a, node_b, /)

	Return the edge data for all the edges between 2 nodes.

	get_edge_data(node_a, node_b, /)

	Return the edge data for an edge between 2 nodes.

	get_node_data(node, /)

	Return the node data for a given node index

	has_edge(node_a, node_b, /)

	Return True if there is an edge from node_a to node_b.

	in_degree(node, /)

	Get the degree of a node for inbound edges.

	in_edges(node, /)

	Get the index and edge data for all parents of a node.

	insert_node_on_in_edges(node, ref_node, /)

	Insert a node between a reference node and all its predecessor nodes

	insert_node_on_in_edges_multiple(node, …)

	Insert a node between a list of reference nodes and all their predecessors

	insert_node_on_out_edges(node, ref_node, /)

	Insert a node between a reference node and all its successor nodes

	insert_node_on_out_edges_multiple(node, …)

	Insert a node between a list of reference nodes and all their successors

	is_symmetric()

	Check if the graph is symmetric

	merge_nodes(u, /, v)

	Merge two nodes in the graph.

	neighbors(node, /)

	Get the neighbors (i.e.

	node_indexes()

	Return a list of all node indexes.

	nodes()

	Return a list of all node data.

	out_degree(node, /)

	Get the degree of a node for outbound edges.

	out_edges(node, /)

	Get the index and edge data for all children of a node.

	predecessor_indices(node, /)

	Get the predecessor indices of a node.

	predecessors(node, /)

	Return a list of all the node predecessor data.

	read_edge_list(path, /[, comment, deliminator])

	Read an edge list file and create a new PyDiGraph object from the contents

	remove_edge(parent, child, /)

	Remove an edge between 2 nodes.

	remove_edge_from_index(edge, /)

	Remove an edge identified by the provided index

	remove_edges_from(index_list, /)

	Remove edges from the graph.

	remove_node(node, /)

	Remove a node from the graph.

	remove_node_retain_edges(node, /[, …])

	Remove a node from the graph and add edges from all predecessors to all successors

	remove_nodes_from(index_list, /)

	Remove nodes from the graph.

	subgraph(nodes, /)

	Return a new PyDiGraph object for a subgraph of this graph

	successor_indices(node, /)

	Get the successor indices of a node.

	successors(node, /)

	Return a list of all the node successor data.

	to_dot([node_attr, edge_attr, graph_attr, …])

	Generate a dot file from the graph

	to_undirected()

	Generate a new PyGraph object from this graph

	update_edge(source, target, /, edge)

	Update an edge’s weight/payload inplace

	update_edge_by_index(source, target, /, edge)

	Update an edge’s weight/payload by the edge index

	weighted_edge_list

	Get edge list with weights

Attributes

	check_cycle

	Whether cycle checking is enabled for the DiGraph/DAG.

	multigraph

	Whether the graph is a multigraph (allows multiple edges between nodes) or not

	
add_child(parent, obj, edge, /)

	Add a new child node to the graph.

This will create a new node on the graph and add an edge from the parent
to that new node.

	Parameters

	
	parent (int) – The index for the parent node

	obj – The python object to attach to the node

	edge – The python object to attach to the edge

	Returns

	The index of the newly created child node

	Return type

	int

	
add_edge(parent, child, edge, /)

	Add an edge between 2 nodes.

Use add_child() or add_parent() to create a node with an edge at the
same time as an edge for better performance. Using this method will
enable adding duplicate edges between nodes if the check_cycle
attribute is set to True.

	Parameters

	
	parent (int) – Index of the parent node

	child (int) – Index of the child node

	edge – The object to set as the data for the edge. It can be any
python object.

	Returns

	The edge index of the created edge

	Return type

	int

	Raises

	When the new edge will create a cycle

	
add_edges_from(obj_list, /)

	Add new edges to the dag.

	Parameters

	obj_list (list) – A list of tuples of the form
(parent, child, obj) to attach to the graph. parent and
child are integer indexes describing where an edge should be
added, and obj is the python object for the edge data.

	Returns

	A list of int indices of the newly created edges

	Return type

	list

	
add_edges_from_no_data(obj_list, /)

	Add new edges to the dag without python data.

	Parameters

	obj_list (list) – A list of tuples of the form
(parent, child) to attach to the graph. parent and
child are integer indexes describing where an edge should be
added. Unlike add_edges_from() there is no data payload and
when the edge is created None will be used.

	Returns

	A list of int indices of the newly created edges

	Return type

	list

	
add_node(obj, /)

	Add a new node to the graph.

	Parameters

	obj – The python object to attach to the node

	Returns

	The index of the newly created node

	Return type

	int

	
add_nodes_from(obj_list, /)

	Add new nodes to the graph.

	Parameters

	obj_list (list) – A list of python objects to attach to the graph
as new nodes

	Returns

	A list of int indices of the newly created nodes

	Return type

	NodeIndices

	
add_parent(child, obj, edge, /)

	Add a new parent node to the dag.

This create a new node on the dag and add an edge to the child from
that new node

	Parameters

	
	child (int) – The index of the child node

	obj – The python object to attach to the node

	edge – The python object to attach to the edge

	Returns index

	The index of the newly created parent node

	Return type

	int

	
adj(node, /)

	Get the index and data for the neighbors of a node.

This will return a dictionary where the keys are the node indexes of
the adjacent nodes (inbound or outbound) and the value is the edge dat
objects between that adjacent node and the provided node. Note in
the case of a multigraph only one edge will be used, not all of the
edges between two node.

	Parameters

	node (int) – The index of the node to get the neighbors

	Returns

	A dictionary where the keys are node indexes and the value
is the edge data object for all nodes that share an edge with the
specified node.

	Return type

	dict

	
adj_direction(node, direction, /)

	Get the index and data for either the parent or children of a node.

This will return a dictionary where the keys are the node indexes of
the adjacent nodes (inbound or outbound as specified) and the value
is the edge data objects for the edges between that adjacent node
and the provided node. Note in the case of a multigraph only one edge
one edge will be used, not all of the edges between two node.

	Parameters

	
	node (int) – The index of the node to get the neighbors

	direction (bool) – The direction to use for finding nodes,
True means inbound edges and False means outbound edges.

	Returns

	A dictionary where the keys are node indexes and
the value is the edge data object for all nodes that share an
edge with the specified node.

	Return type

	dict

	
check_cycle

	Whether cycle checking is enabled for the DiGraph/DAG.

If set to True adding new edges that would introduce a cycle
will raise a DAGWouldCycle exception.

	
compose(other, node_map, /, node_map_func=None, edge_map_func=None)

	Add another PyDiGraph object into this PyDiGraph

	Parameters

	
	other (PyDiGraph) – The other PyDiGraph object to add onto this
graph.

	node_map (dict) – A dictionary mapping node indexes from this
PyDiGraph object to node indexes in the other PyDiGraph object.
The keys are a node index in this graph and the value is a tuple
of the node index in the other graph to add an edge to and the
weight of that edge. For example:

{
 1: (2, "weight"),
 2: (4, "weight2")
}

	node_map_func – An optional python callable that will take in a
single node weight/data object and return a new node weight/data
object that will be used when adding an node from other onto this
graph.

	edge_map_func – An optional python callable that will take in a
single edge weight/data object and return a new edge weight/data
object that will be used when adding an edge from other onto this
graph.

	Returns

	new_node_ids: A dictionary mapping node index from the other
PyDiGraph to the corresponding node index in this PyDAG after they’ve been
combined

	Return type

	dict

For example, start by building a graph:

import os
import tempfile

import pydot
from PIL import Image

import retworkx

Build first graph and visualize:
graph = retworkx.PyDiGraph()
node_a = graph.add_node('A')
node_b = graph.add_child(node_a, 'B', 'A to B')
node_c = graph.add_child(node_b, 'C', 'B to C')
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'graph.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyDiGraph_2_0.png]

Then build a second one:

Build second graph and visualize:
other_graph = retworkx.PyDiGraph()
node_d = other_graph.add_node('D')
other_graph.add_child(node_d, 'E', 'D to E')
dot_str = other_graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'other_graph.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyDiGraph_3_0.png]

Finally compose the other_graph onto graph

node_map = {node_b: (node_d, 'B to D')}
graph.compose(other_graph, node_map)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'combined_graph.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyDiGraph_4_0.png]

	
edge_list()

	Get edge list

Returns a list of tuples of the form (source, target) where
source and target are the node indices.

	Returns

	An edge list with weights

	Return type

	EdgeList

	
edges()

	Return a list of all edge data.

	Returns

	A list of all the edge data objects in the graph

	Return type

	list

	
extend_from_edge_list(edge_list, /)

	Extend graph from an edge list

This method differs from add_edges_from_no_data() in that it will
add nodes if a node index is not present in the edge list.

	Parameters

	edge_list (list) – A list of tuples of the form (source, target)
where source and target are integer node indices. If the node index
is not present in the graph, nodes will be added (with a node
weight of None) to that index.

	
extend_from_weighted_edge_list(edge_lsit, /)

	Extend graph from a weighted edge list

This method differs from add_edges_from() in that it will
add nodes if a node index is not present in the edge list.

	Parameters

	edge_list (list) – A list of tuples of the form
(source, target, weight) where source and target are integer
node indices. If the node index is not present in the graph
nodes will be added (with a node weight of None) to that index.

	
find_adjacent_node_by_edge(node, predicate, /)

	Find a target node with a specific edge

This method is used to find a target node that is a adjacent to a given
node given an edge condition.

	Parameters

	
	node (int) – The node to use as the source of the search

	predicate (callable) – A python callable that will take a single
parameter, the edge object, and will return a boolean if the
edge matches or not

	Returns

	The node object that has an edge to it from the provided
node index which matches the provided condition

	
find_node_by_weight()

	Find node within this graph given a specific weight

This algorithm has a worst case of O(n) since it searches the node
indices in order. If there is more than one node in the graph with the
same weight only the first match (by node index) will be returned.

	Parameters

	obj – The weight to look for in the graph.

	Returns

	the index of the first node in the graph that is equal to the
weight. If no match is found None will be returned.

	Return type

	int

	
static from_adjacency_matrix(matrix, /)

	Create a new PyDiGraph object from an adjacency matrix

This method can be used to construct a new PyDiGraph
object from an input adjacency matrix. The node weights will be the
index from the matrix. The edge weights will be a float value of the
value from the matrix.

	Parameters

	matrix (ndarray) – The input numpy array adjacency matrix to create
a new PyDiGraph object from. It must be a 2
dimensional array and be a float/np.float64 data type.

	Returns

	A new graph object generated from the adjacency matrix

	Return type

	PyDiGraph

	
get_all_edge_data(node_a, node_b, /)

	Return the edge data for all the edges between 2 nodes.

	Parameters

	
	node_a (int) – The index for the first node

	node_b (int) – The index for the second node

	Returns

	A list with all the data objects for the edges between nodes

	Return type

	list

	Raises

	NoEdgeBetweenNodes – When there is no edge between nodes

	
get_edge_data(node_a, node_b, /)

	Return the edge data for an edge between 2 nodes.

	Parameters

	
	node_a (int) – The index for the first node

	node_b (int) – The index for the second node

	Returns

	The data object set for the edge

	Raises

	NoEdgeBetweenNodes – When there is no edge between nodes

	
get_node_data(node, /)

	Return the node data for a given node index

	Parameters

	node (int) – The index for the node

	Returns

	The data object set for that node

	Raises

	IndexError – when an invalid node index is provided

	
has_edge(node_a, node_b, /)

	Return True if there is an edge from node_a to node_b.

	Parameters

	
	node_a (int) – The source node index to check for an edge

	node_b (int) – The destination node index to check for an edge

	Returns

	True if there is an edge false if there is no edge

	Return type

	bool

	
in_degree(node, /)

	Get the degree of a node for inbound edges.

	Parameters

	node (int) – The index of the node to find the inbound degree of

	Returns

	The inbound degree for the specified node

	Return type

	int

	
in_edges(node, /)

	Get the index and edge data for all parents of a node.

This will return a list of tuples with the parent index the node index
and the edge data. This can be used to recreate add_edge() calls.
:param int node: The index of the node to get the edges for

	Parameters

	node (int) – The index of the node to get the edges for

	Returns

	A list of tuples of the form:
(parent_index, node_index, edge_data)`

	Return type

	WeightedEdgeList

	
insert_node_on_in_edges(node, ref_node, /)

	Insert a node between a reference node and all its predecessor nodes

This essentially iterates over all edges into the reference node
specified in the ref_node parameter removes those edges and then
adds 2 edges, one from the predecessor of ref_node to node and
the other from node to ref_node. The edge payloads for the
newly created edges are copied by reference from the original edge that
gets removed.

	Parameters

	
	node (int) – The node index to insert between

	ref_node (int) – The reference node index to insert node
between

	
insert_node_on_in_edges_multiple(node, ref_nodes, /)

	Insert a node between a list of reference nodes and all their predecessors

This essentially iterates over all edges into the reference node
specified in the ref_nodes parameter removes those edges and then
adds 2 edges, one from the predecessor of ref_node to node
and the other from node to ref_node. The edge payloads for
the newly created edges are copied by reference from the original
edge that gets removed.

	Parameters

	
	node (int) – The node index to insert between

	ref_node (int) – The reference node index to insert node
between

	
insert_node_on_out_edges(node, ref_node, /)

	Insert a node between a reference node and all its successor nodes

This essentially iterates over all edges out of the reference node
specified in the ref_node parameter removes those edges and then
adds 2 edges, one from ref_node to node and the other from
node to the successor of ref_node. The edge payloads for the
newly created edges are copied by reference from the original edge
that gets removed.

	Parameters

	
	node (int) – The node index to insert between

	ref_node (int) – The reference node index to insert node
between

	
insert_node_on_out_edges_multiple(node, ref_nodes, /)

	Insert a node between a list of reference nodes and all their successors

This essentially iterates over all edges out of the reference node
specified in the ref_node parameter removes those edges and then
adds 2 edges, one from ref_node to node and the other from
node to the successor of ref_node. The edge payloads for the
newly created edges are copied by reference from the original edge that
gets removed.

	Parameters

	
	node (int) – The node index to insert between

	ref_nodes (int) – The list of node indices to insert node
between

	
is_symmetric()

	Check if the graph is symmetric

	Returns

	True if the graph is symmetric

	Return type

	bool

	
merge_nodes(u, /, v)

	Merge two nodes in the graph.

If the nodes have equal weight objects then all the edges into and out of u will be added
to v and u will be removed from the graph. If the nodes don’t have equal weight
objects then no changes will be made and no error raised

	Parameters

	
	u (int) – The source node that is going to be merged

	v (int) – The target node that is going to be the new node

	
multigraph

	Whether the graph is a multigraph (allows multiple edges between
nodes) or not

If set to False multiple edges between nodes are not allowed and
calls that would add a parallel edge will instead update the existing
edge

	
neighbors(node, /)

	Get the neighbors (i.e. successors) of a node.

This will return a list of neighbor node indices. This function
is equivalent to successor_indices().

	Parameters

	node (int) – The index of the node to get the neighbors of

	Returns

	A list of the neighbor node indices

	Return type

	NodeIndices

	
node_indexes()

	Return a list of all node indexes.

	Returns

	A list of all the node indexes in the graph

	Return type

	NodeIndices

	
nodes()

	Return a list of all node data.

	Returns

	A list of all the node data objects in the graph

	Return type

	list

	
out_degree(node, /)

	Get the degree of a node for outbound edges.

	Parameters

	node (int) – The index of the node to find the outbound degree of

	Returns

	The outbound degree for the specified node

	Return type

	int

	
out_edges(node, /)

	Get the index and edge data for all children of a node.

This will return a list of tuples with the child index the node index
and the edge data. This can be used to recreate add_edge() calls.

	Parameters

	node (int) – The index of the node to get the edges for

	Returns out_edges

	A list of tuples of the form:
`(node_index, child_index, edge_data)`

	Return type

	WeightedEdgeList

	
predecessor_indices(node, /)

	Get the predecessor indices of a node.

This will return a list of the node indicies for the predecessors of
a node

	Parameters

	node (int) – The index of the node to get the predecessors of

	Returns

	A list of the neighbor node indicies

	Return type

	NodeIndices

	
predecessors(node, /)

	Return a list of all the node predecessor data.

	Parameters

	node (int) – The index for the node to get the predecessors for

	Returns

	A list of the node data for all the parent neighbor nodes

	Return type

	list

	
static read_edge_list(path, /, comment=None, deliminator=None)

	Read an edge list file and create a new PyDiGraph object from the
contents

The expected format for the edge list file is a line seperated list
of deliminated node ids. If there are more than 3 elements on
a line the 3rd on will be treated as a string weight for the edge

	Parameters

	
	path (str) – The path of the file to open

	comment (str) – Optional character to use as a comment by default
there are no comment characters

	deliminator (str) – Optional character to use as a deliminator by
default any whitespace will be used

For example:

import os
import tempfile

from PIL import Image
import pydot

import retworkx

with tempfile.NamedTemporaryFile('wt') as fd:
 path = fd.name
 fd.write('0 1\n')
 fd.write('0 2\n')
 fd.write('0 3\n')
 fd.write('1 2\n')
 fd.write('2 3\n')
 fd.flush()
 graph = retworkx.PyDiGraph.read_edge_list(path)

Draw graph
dot = pydot.graph_from_dot_data(graph.to_dot())[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyDiGraph_5_0.png]

	
remove_edge(parent, child, /)

	Remove an edge between 2 nodes.

Note if there are multiple edges between the specified nodes only one
will be removed.

	Parameters

	
	parent (int) – The index for the parent node.

	child (int) – The index of the child node.

	Raises

	NoEdgeBetweenNodes – If there are no edges between the nodes
specified

	
remove_edge_from_index(edge, /)

	Remove an edge identified by the provided index

	Parameters

	edge (int) – The index of the edge to remove

	
remove_edges_from(index_list, /)

	Remove edges from the graph.

Note if there are multiple edges between the specified nodes only one
will be removed.

	Parameters

	index_list (list) – A list of node index pairs to remove from
the graph

	
remove_node(node, /)

	Remove a node from the graph.

	Parameters

	node (int) – The index of the node to remove. If the index is not
present in the graph it will be ignored and this function will have
no effect.

	
remove_node_retain_edges(node, /, use_outgoing=None, condition=None)

	Remove a node from the graph and add edges from all predecessors to all
successors

By default the data/weight on edges into the removed node will be used
for the retained edges.

	Parameters

	
	node (int) – The index of the node to remove. If the index is not
present in the graph it will be ingored and this function willl have
no effect.

	use_outgoing (bool) – If set to true the weight/data from the
edge outgoing from node will be used in the retained edge
instead of the default weight/data from the incoming edge.

	condition – A callable that will be passed 2 edge weight/data
objects, one from the incoming edge to node the other for the
outgoing edge, and will return a bool on whether an edge should
be retained. For example setting this kwarg to:

lambda in_edge, out_edge: in_edge == out_edge

would only retain edges if the input edge to node had the same
data payload as the outgoing edge.

	
remove_nodes_from(index_list, /)

	Remove nodes from the graph.

If a node index in the list is not present in the graph it will be
ignored.

	Parameters

	index_list (list) – A list of node indicies to remove from the
the graph.

	
subgraph(nodes, /)

	Return a new PyDiGraph object for a subgraph of this graph

	Parameters

	nodes (list) – A list of node indices to generate the subgraph
from. If a node index is included that is not present in the graph
it will silently be ignored.

	Returns

	A new PyDiGraph object representing a subgraph of this graph.
It is worth noting that node and edge weight/data payloads are
passed by reference so if you update (not replace) an object used
as the weight in graph or the subgraph it will also be updated in
the other.

	Return type

	PyGraph

	
successor_indices(node, /)

	Get the successor indices of a node.

This will return a list of the node indicies for the succesors of
a node

	Parameters

	node (int) – The index of the node to get the successors of

	Returns

	A list of the neighbor node indicies

	Return type

	NodeIndices

	
successors(node, /)

	Return a list of all the node successor data.

	Parameters

	node (int) – The index for the node to get the successors for

	Returns

	A list of the node data for all the child neighbor nodes

	Return type

	list

	
to_dot(node_attr=None, edge_attr=None, graph_attr=None, filename=None)

	Generate a dot file from the graph

	Parameters

	
	node_attr – A callable that will take in a node data object
and return a dictionary of attributes to be associated with the
node in the dot file. The key and value of this dictionary must
be strings. If they’re not strings retworkx will raise TypeError
(unfortunately without an error message because of current
limitations in the PyO3 type checking)

	edge_attr – A callable that will take in an edge data object
and return a dictionary of attributes to be associated with the
node in the dot file. The key and value of this dictionary must
be a string. If they’re not strings retworkx will raise TypeError
(unfortunately without an error message because of current
limitations in the PyO3 type checking)

	graph_attr (dict) – An optional dictionary that specifies any graph
attributes for the output dot file. The key and value of this
dictionary must be a string. If they’re not strings retworkx
will raise TypeError (unfortunately without an error message
because of current limitations in the PyO3 type checking)

	filename (str) – An optional path to write the dot file to
if specified there is no return from the function

	Returns

	A string with the dot file contents if filename is not
specified.

	Return type

	str

Using this method enables you to leverage graphviz to visualize a
retworkx.PyDiGraph object. For example:

import os
import tempfile

import pydot
from PIL import Image

import retworkx

graph = retworkx.directed_gnp_random_graph(15, .25)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyDiGraph_6_0.png]

	
to_undirected()

	Generate a new PyGraph object from this graph

This will create a new PyGraph object from this
graph. All edges in this graph will be created as undirected edges in
the new graph object.
Do note that the node and edge weights/data payloads will be passed
by reference to the new PyGraph object.

	Returns

	A new PyGraph object with an undirected edge for every
directed edge in this graph

	Return type

	PyGraph

	
update_edge(source, target, /, edge)

	Update an edge’s weight/payload inplace

If there are parallel edges in the graph only one edge will be updated.
if you need to update a specific edge or need to ensure all parallel
edges get updated you should use
update_edge_by_index() instead.

	Parameters

	
	source (int) – The index for the first node

	target (int) – The index for the second node

	Raises

	NoEdgeBetweenNodes – When there is no edge between nodes

	
update_edge_by_index(source, target, /, edge)

	Update an edge’s weight/payload by the edge index

	Parameters

	
	edge_index (int) – The index for the edge

	edge (object) – The data payload/weight to update the edge with

	Raises

	NoEdgeBetweenNodes – When there is no edge between nodes

	
weighted_edge_list()

	Get edge list with weights

Returns a list of tuples of the form (source, target, weight) where
source and target are the node indices and weight is the
payload of the edge.

	Returns

	An edge list with weights

	Return type

	WeightedEdgeList

retworkx.PyDAG

	
class PyDAG(check_cycle=False, multigraph=True, /)

	A class for creating direct acyclic graphs.

PyDAG is just an alias of the PyDiGraph class and behaves identically to
the PyDiGraph class and can be used interchangably
with PyDiGraph. It currently exists solely as a backwards
compatibility alias for users of retworkx from prior to the
0.4.0 release when there was no PyDiGraph class.

The PyDAG class is used to create a directed graph. It can be a
multigraph (have multiple edges between nodes). Each node and edge
(although rarely used for edges) is indexed by an integer id. Additionally,
each node and edge contains an arbitrary Python object as a weight/data
payload.

You can use the index for access to the data payload as in the
following example:

import retworkx

graph = retworkx.PyDAG()
data_payload = "An arbitrary Python object"
node_index = graph.add_node(data_payload)
print("Node Index: %s" % node_index)
print(graph[node_index])

Node Index: 0
An arbitrary Python object

The PyDAG class implements the Python mapping protocol for nodes so in
addition to access you can also update the data payload with:

import retworkx

graph = retworkx.PyDAG()
data_payload = "An arbitrary Python object"
node_index = graph.add_node(data_payload)
graph[node_index] = "New Payload"
print("Node Index: %s" % node_index)
print(graph[node_index])

Node Index: 0
New Payload

The PyDAG class has an option for real time cycle checking which can
be used to ensure any edges added to the graph does not introduce a cycle.
By default the real time cycle checking feature is disabled for
performance, however you can enable it by setting the check_cycle
attribute to True. For example:

import retworkx
dag = retworkx.PyDAG()
dag.check_cycle = True

or at object creation:

import retworkx
dag = retworkx.PyDAG(check_cycle=True)

With check_cycle set to true any calls to PyDAG.add_edge() will
ensure that no cycles are added, ensuring that the PyDAG class truly
represents a directed acyclic graph. Do note that this cycle checking on
add_edge(), add_edges_from(),
add_edges_from_no_data(),
extend_from_edge_list(), and
extend_from_weighted_edge_list() comes with a performance
penalty that grows as the graph does. If you’re adding a node and edge at
the same time, leveraging PyDAG.add_child() or
PyDAG.add_parent() will avoid this overhead.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__()

	Initialize self.

	add_child(parent, obj, edge, /)

	Add a new child node to the graph.

	add_edge(parent, child, edge, /)

	Add an edge between 2 nodes.

	add_edges_from(obj_list, /)

	Add new edges to the dag.

	add_edges_from_no_data(obj_list, /)

	Add new edges to the dag without python data.

	add_node(obj, /)

	Add a new node to the graph.

	add_nodes_from(obj_list, /)

	Add new nodes to the graph.

	add_parent(child, obj, edge, /)

	Add a new parent node to the dag.

	adj(node, /)

	Get the index and data for the neighbors of a node.

	adj_direction(node, direction, /)

	Get the index and data for either the parent or children of a node.

	compose(other, node_map, /[, node_map_func, …])

	Add another PyDiGraph object into this PyDiGraph

	edge_list

	Get edge list

	edges()

	Return a list of all edge data.

	extend_from_edge_list(edge_list, /)

	Extend graph from an edge list

	extend_from_weighted_edge_list(edge_lsit, /)

	Extend graph from a weighted edge list

	find_adjacent_node_by_edge(node, predicate, /)

	Find a target node with a specific edge

	find_node_by_weight

	Find node within this graph given a specific weight

	from_adjacency_matrix(matrix, /)

	Create a new PyDiGraph object from an adjacency matrix

	get_all_edge_data(node_a, node_b, /)

	Return the edge data for all the edges between 2 nodes.

	get_edge_data(node_a, node_b, /)

	Return the edge data for an edge between 2 nodes.

	get_node_data(node, /)

	Return the node data for a given node index

	has_edge(node_a, node_b, /)

	Return True if there is an edge from node_a to node_b.

	in_degree(node, /)

	Get the degree of a node for inbound edges.

	in_edges(node, /)

	Get the index and edge data for all parents of a node.

	insert_node_on_in_edges(node, ref_node, /)

	Insert a node between a reference node and all its predecessor nodes

	insert_node_on_in_edges_multiple(node, …)

	Insert a node between a list of reference nodes and all their predecessors

	insert_node_on_out_edges(node, ref_node, /)

	Insert a node between a reference node and all its successor nodes

	insert_node_on_out_edges_multiple(node, …)

	Insert a node between a list of reference nodes and all their successors

	is_symmetric()

	Check if the graph is symmetric

	merge_nodes(u, /, v)

	Merge two nodes in the graph.

	neighbors(node, /)

	Get the neighbors (i.e.

	node_indexes()

	Return a list of all node indexes.

	nodes()

	Return a list of all node data.

	out_degree(node, /)

	Get the degree of a node for outbound edges.

	out_edges(node, /)

	Get the index and edge data for all children of a node.

	predecessor_indices(node, /)

	Get the predecessor indices of a node.

	predecessors(node, /)

	Return a list of all the node predecessor data.

	read_edge_list(path, /[, comment, deliminator])

	Read an edge list file and create a new PyDiGraph object from the contents

	remove_edge(parent, child, /)

	Remove an edge between 2 nodes.

	remove_edge_from_index(edge, /)

	Remove an edge identified by the provided index

	remove_edges_from(index_list, /)

	Remove edges from the graph.

	remove_node(node, /)

	Remove a node from the graph.

	remove_node_retain_edges(node, /[, …])

	Remove a node from the graph and add edges from all predecessors to all successors

	remove_nodes_from(index_list, /)

	Remove nodes from the graph.

	subgraph(nodes, /)

	Return a new PyDiGraph object for a subgraph of this graph

	successor_indices(node, /)

	Get the successor indices of a node.

	successors(node, /)

	Return a list of all the node successor data.

	to_dot([node_attr, edge_attr, graph_attr, …])

	Generate a dot file from the graph

	to_undirected()

	Generate a new PyGraph object from this graph

	update_edge(source, target, /, edge)

	Update an edge’s weight/payload inplace

	update_edge_by_index(source, target, /, edge)

	Update an edge’s weight/payload by the edge index

	weighted_edge_list

	Get edge list with weights

Attributes

	check_cycle

	Whether cycle checking is enabled for the DiGraph/DAG.

	multigraph

	Whether the graph is a multigraph (allows multiple edges between nodes) or not

	
add_child(parent, obj, edge, /)

	Add a new child node to the graph.

This will create a new node on the graph and add an edge from the parent
to that new node.

	Parameters

	
	parent (int) – The index for the parent node

	obj – The python object to attach to the node

	edge – The python object to attach to the edge

	Returns

	The index of the newly created child node

	Return type

	int

	
add_edge(parent, child, edge, /)

	Add an edge between 2 nodes.

Use add_child() or add_parent() to create a node with an edge at the
same time as an edge for better performance. Using this method will
enable adding duplicate edges between nodes if the check_cycle
attribute is set to True.

	Parameters

	
	parent (int) – Index of the parent node

	child (int) – Index of the child node

	edge – The object to set as the data for the edge. It can be any
python object.

	Returns

	The edge index of the created edge

	Return type

	int

	Raises

	When the new edge will create a cycle

	
add_edges_from(obj_list, /)

	Add new edges to the dag.

	Parameters

	obj_list (list) – A list of tuples of the form
(parent, child, obj) to attach to the graph. parent and
child are integer indexes describing where an edge should be
added, and obj is the python object for the edge data.

	Returns

	A list of int indices of the newly created edges

	Return type

	list

	
add_edges_from_no_data(obj_list, /)

	Add new edges to the dag without python data.

	Parameters

	obj_list (list) – A list of tuples of the form
(parent, child) to attach to the graph. parent and
child are integer indexes describing where an edge should be
added. Unlike add_edges_from() there is no data payload and
when the edge is created None will be used.

	Returns

	A list of int indices of the newly created edges

	Return type

	list

	
add_node(obj, /)

	Add a new node to the graph.

	Parameters

	obj – The python object to attach to the node

	Returns

	The index of the newly created node

	Return type

	int

	
add_nodes_from(obj_list, /)

	Add new nodes to the graph.

	Parameters

	obj_list (list) – A list of python objects to attach to the graph
as new nodes

	Returns

	A list of int indices of the newly created nodes

	Return type

	NodeIndices

	
add_parent(child, obj, edge, /)

	Add a new parent node to the dag.

This create a new node on the dag and add an edge to the child from
that new node

	Parameters

	
	child (int) – The index of the child node

	obj – The python object to attach to the node

	edge – The python object to attach to the edge

	Returns index

	The index of the newly created parent node

	Return type

	int

	
adj(node, /)

	Get the index and data for the neighbors of a node.

This will return a dictionary where the keys are the node indexes of
the adjacent nodes (inbound or outbound) and the value is the edge dat
objects between that adjacent node and the provided node. Note in
the case of a multigraph only one edge will be used, not all of the
edges between two node.

	Parameters

	node (int) – The index of the node to get the neighbors

	Returns

	A dictionary where the keys are node indexes and the value
is the edge data object for all nodes that share an edge with the
specified node.

	Return type

	dict

	
adj_direction(node, direction, /)

	Get the index and data for either the parent or children of a node.

This will return a dictionary where the keys are the node indexes of
the adjacent nodes (inbound or outbound as specified) and the value
is the edge data objects for the edges between that adjacent node
and the provided node. Note in the case of a multigraph only one edge
one edge will be used, not all of the edges between two node.

	Parameters

	
	node (int) – The index of the node to get the neighbors

	direction (bool) – The direction to use for finding nodes,
True means inbound edges and False means outbound edges.

	Returns

	A dictionary where the keys are node indexes and
the value is the edge data object for all nodes that share an
edge with the specified node.

	Return type

	dict

	
check_cycle

	Whether cycle checking is enabled for the DiGraph/DAG.

If set to True adding new edges that would introduce a cycle
will raise a DAGWouldCycle exception.

	
compose(other, node_map, /, node_map_func=None, edge_map_func=None)

	Add another PyDiGraph object into this PyDiGraph

	Parameters

	
	other (PyDiGraph) – The other PyDiGraph object to add onto this
graph.

	node_map (dict) – A dictionary mapping node indexes from this
PyDiGraph object to node indexes in the other PyDiGraph object.
The keys are a node index in this graph and the value is a tuple
of the node index in the other graph to add an edge to and the
weight of that edge. For example:

{
 1: (2, "weight"),
 2: (4, "weight2")
}

	node_map_func – An optional python callable that will take in a
single node weight/data object and return a new node weight/data
object that will be used when adding an node from other onto this
graph.

	edge_map_func – An optional python callable that will take in a
single edge weight/data object and return a new edge weight/data
object that will be used when adding an edge from other onto this
graph.

	Returns

	new_node_ids: A dictionary mapping node index from the other
PyDiGraph to the corresponding node index in this PyDAG after they’ve been
combined

	Return type

	dict

For example, start by building a graph:

import os
import tempfile

import pydot
from PIL import Image

import retworkx

Build first graph and visualize:
graph = retworkx.PyDiGraph()
node_a = graph.add_node('A')
node_b = graph.add_child(node_a, 'B', 'A to B')
node_c = graph.add_child(node_b, 'C', 'B to C')
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'graph.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyDAG_2_0.png]

Then build a second one:

Build second graph and visualize:
other_graph = retworkx.PyDiGraph()
node_d = other_graph.add_node('D')
other_graph.add_child(node_d, 'E', 'D to E')
dot_str = other_graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'other_graph.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyDAG_3_0.png]

Finally compose the other_graph onto graph

node_map = {node_b: (node_d, 'B to D')}
graph.compose(other_graph, node_map)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'combined_graph.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyDAG_4_0.png]

	
edge_list()

	Get edge list

Returns a list of tuples of the form (source, target) where
source and target are the node indices.

	Returns

	An edge list with weights

	Return type

	EdgeList

	
edges()

	Return a list of all edge data.

	Returns

	A list of all the edge data objects in the graph

	Return type

	list

	
extend_from_edge_list(edge_list, /)

	Extend graph from an edge list

This method differs from add_edges_from_no_data() in that it will
add nodes if a node index is not present in the edge list.

	Parameters

	edge_list (list) – A list of tuples of the form (source, target)
where source and target are integer node indices. If the node index
is not present in the graph, nodes will be added (with a node
weight of None) to that index.

	
extend_from_weighted_edge_list(edge_lsit, /)

	Extend graph from a weighted edge list

This method differs from add_edges_from() in that it will
add nodes if a node index is not present in the edge list.

	Parameters

	edge_list (list) – A list of tuples of the form
(source, target, weight) where source and target are integer
node indices. If the node index is not present in the graph
nodes will be added (with a node weight of None) to that index.

	
find_adjacent_node_by_edge(node, predicate, /)

	Find a target node with a specific edge

This method is used to find a target node that is a adjacent to a given
node given an edge condition.

	Parameters

	
	node (int) – The node to use as the source of the search

	predicate (callable) – A python callable that will take a single
parameter, the edge object, and will return a boolean if the
edge matches or not

	Returns

	The node object that has an edge to it from the provided
node index which matches the provided condition

	
find_node_by_weight()

	Find node within this graph given a specific weight

This algorithm has a worst case of O(n) since it searches the node
indices in order. If there is more than one node in the graph with the
same weight only the first match (by node index) will be returned.

	Parameters

	obj – The weight to look for in the graph.

	Returns

	the index of the first node in the graph that is equal to the
weight. If no match is found None will be returned.

	Return type

	int

	
static from_adjacency_matrix(matrix, /)

	Create a new PyDiGraph object from an adjacency matrix

This method can be used to construct a new PyDiGraph
object from an input adjacency matrix. The node weights will be the
index from the matrix. The edge weights will be a float value of the
value from the matrix.

	Parameters

	matrix (ndarray) – The input numpy array adjacency matrix to create
a new PyDiGraph object from. It must be a 2
dimensional array and be a float/np.float64 data type.

	Returns

	A new graph object generated from the adjacency matrix

	Return type

	PyDiGraph

	
get_all_edge_data(node_a, node_b, /)

	Return the edge data for all the edges between 2 nodes.

	Parameters

	
	node_a (int) – The index for the first node

	node_b (int) – The index for the second node

	Returns

	A list with all the data objects for the edges between nodes

	Return type

	list

	Raises

	NoEdgeBetweenNodes – When there is no edge between nodes

	
get_edge_data(node_a, node_b, /)

	Return the edge data for an edge between 2 nodes.

	Parameters

	
	node_a (int) – The index for the first node

	node_b (int) – The index for the second node

	Returns

	The data object set for the edge

	Raises

	NoEdgeBetweenNodes – When there is no edge between nodes

	
get_node_data(node, /)

	Return the node data for a given node index

	Parameters

	node (int) – The index for the node

	Returns

	The data object set for that node

	Raises

	IndexError – when an invalid node index is provided

	
has_edge(node_a, node_b, /)

	Return True if there is an edge from node_a to node_b.

	Parameters

	
	node_a (int) – The source node index to check for an edge

	node_b (int) – The destination node index to check for an edge

	Returns

	True if there is an edge false if there is no edge

	Return type

	bool

	
in_degree(node, /)

	Get the degree of a node for inbound edges.

	Parameters

	node (int) – The index of the node to find the inbound degree of

	Returns

	The inbound degree for the specified node

	Return type

	int

	
in_edges(node, /)

	Get the index and edge data for all parents of a node.

This will return a list of tuples with the parent index the node index
and the edge data. This can be used to recreate add_edge() calls.
:param int node: The index of the node to get the edges for

	Parameters

	node (int) – The index of the node to get the edges for

	Returns

	A list of tuples of the form:
(parent_index, node_index, edge_data)`

	Return type

	WeightedEdgeList

	
insert_node_on_in_edges(node, ref_node, /)

	Insert a node between a reference node and all its predecessor nodes

This essentially iterates over all edges into the reference node
specified in the ref_node parameter removes those edges and then
adds 2 edges, one from the predecessor of ref_node to node and
the other from node to ref_node. The edge payloads for the
newly created edges are copied by reference from the original edge that
gets removed.

	Parameters

	
	node (int) – The node index to insert between

	ref_node (int) – The reference node index to insert node
between

	
insert_node_on_in_edges_multiple(node, ref_nodes, /)

	Insert a node between a list of reference nodes and all their predecessors

This essentially iterates over all edges into the reference node
specified in the ref_nodes parameter removes those edges and then
adds 2 edges, one from the predecessor of ref_node to node
and the other from node to ref_node. The edge payloads for
the newly created edges are copied by reference from the original
edge that gets removed.

	Parameters

	
	node (int) – The node index to insert between

	ref_node (int) – The reference node index to insert node
between

	
insert_node_on_out_edges(node, ref_node, /)

	Insert a node between a reference node and all its successor nodes

This essentially iterates over all edges out of the reference node
specified in the ref_node parameter removes those edges and then
adds 2 edges, one from ref_node to node and the other from
node to the successor of ref_node. The edge payloads for the
newly created edges are copied by reference from the original edge
that gets removed.

	Parameters

	
	node (int) – The node index to insert between

	ref_node (int) – The reference node index to insert node
between

	
insert_node_on_out_edges_multiple(node, ref_nodes, /)

	Insert a node between a list of reference nodes and all their successors

This essentially iterates over all edges out of the reference node
specified in the ref_node parameter removes those edges and then
adds 2 edges, one from ref_node to node and the other from
node to the successor of ref_node. The edge payloads for the
newly created edges are copied by reference from the original edge that
gets removed.

	Parameters

	
	node (int) – The node index to insert between

	ref_nodes (int) – The list of node indices to insert node
between

	
is_symmetric()

	Check if the graph is symmetric

	Returns

	True if the graph is symmetric

	Return type

	bool

	
merge_nodes(u, /, v)

	Merge two nodes in the graph.

If the nodes have equal weight objects then all the edges into and out of u will be added
to v and u will be removed from the graph. If the nodes don’t have equal weight
objects then no changes will be made and no error raised

	Parameters

	
	u (int) – The source node that is going to be merged

	v (int) – The target node that is going to be the new node

	
multigraph

	Whether the graph is a multigraph (allows multiple edges between
nodes) or not

If set to False multiple edges between nodes are not allowed and
calls that would add a parallel edge will instead update the existing
edge

	
neighbors(node, /)

	Get the neighbors (i.e. successors) of a node.

This will return a list of neighbor node indices. This function
is equivalent to successor_indices().

	Parameters

	node (int) – The index of the node to get the neighbors of

	Returns

	A list of the neighbor node indices

	Return type

	NodeIndices

	
node_indexes()

	Return a list of all node indexes.

	Returns

	A list of all the node indexes in the graph

	Return type

	NodeIndices

	
nodes()

	Return a list of all node data.

	Returns

	A list of all the node data objects in the graph

	Return type

	list

	
out_degree(node, /)

	Get the degree of a node for outbound edges.

	Parameters

	node (int) – The index of the node to find the outbound degree of

	Returns

	The outbound degree for the specified node

	Return type

	int

	
out_edges(node, /)

	Get the index and edge data for all children of a node.

This will return a list of tuples with the child index the node index
and the edge data. This can be used to recreate add_edge() calls.

	Parameters

	node (int) – The index of the node to get the edges for

	Returns out_edges

	A list of tuples of the form:
`(node_index, child_index, edge_data)`

	Return type

	WeightedEdgeList

	
predecessor_indices(node, /)

	Get the predecessor indices of a node.

This will return a list of the node indicies for the predecessors of
a node

	Parameters

	node (int) – The index of the node to get the predecessors of

	Returns

	A list of the neighbor node indicies

	Return type

	NodeIndices

	
predecessors(node, /)

	Return a list of all the node predecessor data.

	Parameters

	node (int) – The index for the node to get the predecessors for

	Returns

	A list of the node data for all the parent neighbor nodes

	Return type

	list

	
static read_edge_list(path, /, comment=None, deliminator=None)

	Read an edge list file and create a new PyDiGraph object from the
contents

The expected format for the edge list file is a line seperated list
of deliminated node ids. If there are more than 3 elements on
a line the 3rd on will be treated as a string weight for the edge

	Parameters

	
	path (str) – The path of the file to open

	comment (str) – Optional character to use as a comment by default
there are no comment characters

	deliminator (str) – Optional character to use as a deliminator by
default any whitespace will be used

For example:

import os
import tempfile

from PIL import Image
import pydot

import retworkx

with tempfile.NamedTemporaryFile('wt') as fd:
 path = fd.name
 fd.write('0 1\n')
 fd.write('0 2\n')
 fd.write('0 3\n')
 fd.write('1 2\n')
 fd.write('2 3\n')
 fd.flush()
 graph = retworkx.PyDiGraph.read_edge_list(path)

Draw graph
dot = pydot.graph_from_dot_data(graph.to_dot())[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyDAG_5_0.png]

	
remove_edge(parent, child, /)

	Remove an edge between 2 nodes.

Note if there are multiple edges between the specified nodes only one
will be removed.

	Parameters

	
	parent (int) – The index for the parent node.

	child (int) – The index of the child node.

	Raises

	NoEdgeBetweenNodes – If there are no edges between the nodes
specified

	
remove_edge_from_index(edge, /)

	Remove an edge identified by the provided index

	Parameters

	edge (int) – The index of the edge to remove

	
remove_edges_from(index_list, /)

	Remove edges from the graph.

Note if there are multiple edges between the specified nodes only one
will be removed.

	Parameters

	index_list (list) – A list of node index pairs to remove from
the graph

	
remove_node(node, /)

	Remove a node from the graph.

	Parameters

	node (int) – The index of the node to remove. If the index is not
present in the graph it will be ignored and this function will have
no effect.

	
remove_node_retain_edges(node, /, use_outgoing=None, condition=None)

	Remove a node from the graph and add edges from all predecessors to all
successors

By default the data/weight on edges into the removed node will be used
for the retained edges.

	Parameters

	
	node (int) – The index of the node to remove. If the index is not
present in the graph it will be ingored and this function willl have
no effect.

	use_outgoing (bool) – If set to true the weight/data from the
edge outgoing from node will be used in the retained edge
instead of the default weight/data from the incoming edge.

	condition – A callable that will be passed 2 edge weight/data
objects, one from the incoming edge to node the other for the
outgoing edge, and will return a bool on whether an edge should
be retained. For example setting this kwarg to:

lambda in_edge, out_edge: in_edge == out_edge

would only retain edges if the input edge to node had the same
data payload as the outgoing edge.

	
remove_nodes_from(index_list, /)

	Remove nodes from the graph.

If a node index in the list is not present in the graph it will be
ignored.

	Parameters

	index_list (list) – A list of node indicies to remove from the
the graph.

	
subgraph(nodes, /)

	Return a new PyDiGraph object for a subgraph of this graph

	Parameters

	nodes (list) – A list of node indices to generate the subgraph
from. If a node index is included that is not present in the graph
it will silently be ignored.

	Returns

	A new PyDiGraph object representing a subgraph of this graph.
It is worth noting that node and edge weight/data payloads are
passed by reference so if you update (not replace) an object used
as the weight in graph or the subgraph it will also be updated in
the other.

	Return type

	PyGraph

	
successor_indices(node, /)

	Get the successor indices of a node.

This will return a list of the node indicies for the succesors of
a node

	Parameters

	node (int) – The index of the node to get the successors of

	Returns

	A list of the neighbor node indicies

	Return type

	NodeIndices

	
successors(node, /)

	Return a list of all the node successor data.

	Parameters

	node (int) – The index for the node to get the successors for

	Returns

	A list of the node data for all the child neighbor nodes

	Return type

	list

	
to_dot(node_attr=None, edge_attr=None, graph_attr=None, filename=None)

	Generate a dot file from the graph

	Parameters

	
	node_attr – A callable that will take in a node data object
and return a dictionary of attributes to be associated with the
node in the dot file. The key and value of this dictionary must
be strings. If they’re not strings retworkx will raise TypeError
(unfortunately without an error message because of current
limitations in the PyO3 type checking)

	edge_attr – A callable that will take in an edge data object
and return a dictionary of attributes to be associated with the
node in the dot file. The key and value of this dictionary must
be a string. If they’re not strings retworkx will raise TypeError
(unfortunately without an error message because of current
limitations in the PyO3 type checking)

	graph_attr (dict) – An optional dictionary that specifies any graph
attributes for the output dot file. The key and value of this
dictionary must be a string. If they’re not strings retworkx
will raise TypeError (unfortunately without an error message
because of current limitations in the PyO3 type checking)

	filename (str) – An optional path to write the dot file to
if specified there is no return from the function

	Returns

	A string with the dot file contents if filename is not
specified.

	Return type

	str

Using this method enables you to leverage graphviz to visualize a
retworkx.PyDiGraph object. For example:

import os
import tempfile

import pydot
from PIL import Image

import retworkx

graph = retworkx.directed_gnp_random_graph(15, .25)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.PyDAG_6_0.png]

	
to_undirected()

	Generate a new PyGraph object from this graph

This will create a new PyGraph object from this
graph. All edges in this graph will be created as undirected edges in
the new graph object.
Do note that the node and edge weights/data payloads will be passed
by reference to the new PyGraph object.

	Returns

	A new PyGraph object with an undirected edge for every
directed edge in this graph

	Return type

	PyGraph

	
update_edge(source, target, /, edge)

	Update an edge’s weight/payload inplace

If there are parallel edges in the graph only one edge will be updated.
if you need to update a specific edge or need to ensure all parallel
edges get updated you should use
update_edge_by_index() instead.

	Parameters

	
	source (int) – The index for the first node

	target (int) – The index for the second node

	Raises

	NoEdgeBetweenNodes – When there is no edge between nodes

	
update_edge_by_index(source, target, /, edge)

	Update an edge’s weight/payload by the edge index

	Parameters

	
	edge_index (int) – The index for the edge

	edge (object) – The data payload/weight to update the edge with

	Raises

	NoEdgeBetweenNodes – When there is no edge between nodes

	
weighted_edge_list()

	Get edge list with weights

Returns a list of tuples of the form (source, target, weight) where
source and target are the node indices and weight is the
payload of the edge.

	Returns

	An edge list with weights

	Return type

	WeightedEdgeList

retworkx.generators.cycle_graph

	
cycle_graph(num_nodes=None, weights=None, multigraph=True, /)

	Generate an undirected cycle graph

	Parameters

	
	num_node (int) – The number of nodes to generate the graph with. Node
weights will be None if this is specified. If both num_node and
weights are set this will be ignored and weights will be used.

	weights (list) – A list of node weights, the first element in the list
will be the center node of the cycle graph. If both num_node and
weights are set this will be ignored and weights will be used.

	multigraph (bool) – When set to False the output
PyGraph object will not be not be a multigraph and
won’t allow parallel edges to be added. Instead
calls which would create a parallel edge will update the existing edge.

	Returns

	The generated cycle graph

	Return type

	PyGraph

	Raises

	IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.cycle_graph(5)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.generators.cycle_graph_0_0.png]

retworkx.generators.directed_cycle_graph

	
directed_cycle_graph(num_nodes=None, weights=None, bidirectional=False, /)

	Generate a cycle graph

	Parameters

	
	num_node (int) – The number of nodes to generate the graph with. Node
weights will be None if this is specified. If both num_node and
weights are set this will be ignored and weights will be used.

	weights (list) – A list of node weights, the first element in the list
will be the center node of the cycle graph. If both num_node and
weights are set this will be ignored and weights will be used.

	bidirectional (bool) – Adds edges in both directions between two nodes
if set to True. Default value is False

	Returns

	The generated cycle graph

	Return type

	PyDiGraph

	Raises

	IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.directed_cycle_graph(5)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.generators.directed_cycle_graph_0_0.png]

retworkx.generators.path_graph

	
path_graph(num_nodes=None, weights=None, multigraph=True, /)

	Generate an undirected path graph

	Parameters

	
	num_node (int) – The number of nodes to generate the graph with. Node
weights will be None if this is specified. If both num_node and
weights are set this will be ignored and weights will be used.

	weights (list) – A list of node weights, the first element in the list
will be the center node of the path graph. If both num_node and
weights are set this will be ignored and weights will be used.

	multigraph (bool) – When set to False the output
PyGraph object will not be not be a multigraph and
won’t allow parallel edges to be added. Instead
calls which would create a parallel edge will update the existing edge.

	Returns

	The generated path graph

	Return type

	PyGraph

	Raises

	IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.path_graph(10)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.generators.path_graph_0_0.png]

retworkx.generators.directed_path_graph

	
directed_path_graph(num_nodes=None, weights=None, bidirectional=False, /)

	Generate a directed path graph

	Parameters

	
	num_node (int) – The number of nodes to generate the graph with. Node
weights will be None if this is specified. If both num_node and
weights are set this will be ignored and weights will be used.

	weights (list) – A list of node weights, the first element in the list
will be the center node of the path graph. If both num_node and
weights are set this will be ignored and weights will be used.

	bidirectional (bool) – Adds edges in both directions between two nodes
if set to True. Default value is False

	Returns

	The generated path graph

	Return type

	PyDiGraph

	Raises

	IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.directed_path_graph(10)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.generators.directed_path_graph_0_0.png]

retworkx.generators.star_graph

	
star_graph(num_nodes=None, weights=None, multigraph=True, /)

	Generate an undirected star graph

	Parameters

	
	num_node (int) – The number of nodes to generate the graph with. Node
weights will be None if this is specified. If both num_node and
weights are set this will be ignored and weights will be used.

	weights (list) – A list of node weights, the first element in the list
will be the center node of the star graph. If both num_node and
weights are set this will be ignored and weights will be used.

	multigraph (bool) – When set to False the output
PyGraph object will not be not be a multigraph and
won’t allow parallel edges to be added. Instead
calls which would create a parallel edge will update the existing edge.

	Returns

	The generated star graph

	Return type

	PyGraph

	Raises

	IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.star_graph(10)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.generators.star_graph_0_0.png]

retworkx.generators.directed_star_graph

	
directed_star_graph(num_nodes=None, weights=None, inward=False, bidirectional=False, /)

	Generate a directed star graph

	Parameters

	
	num_node (int) – The number of nodes to generate the graph with. Node
weights will be None if this is specified. If both num_node and
weights are set this will be ignored and weights will be used.

	weights (list) – A list of node weights, the first element in the list
will be the center node of the star graph. If both num_node and
weights are set this will be ignored and weights will be used.

	bidirectional (bool) – Adds edges in both directions between two nodes
if set to True. Default value is False.

	inward (bool) – If set True the nodes will be directed towards the
center node. This parameter is ignored if bidirectional is set to
True.

	Returns

	The generated star graph

	Return type

	PyDiGraph

	Raises

	IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.directed_star_graph(10)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.generators.directed_star_graph_0_0.png]

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.directed_star_graph(10, inward=True)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.generators.directed_star_graph_1_0.png]

retworkx.generators.mesh_graph

	
mesh_graph(num_nodes=None, weights=None, multigraph=True, /)

	Generate an undirected mesh graph where every node is connected to every other

	Parameters

	
	num_node (int) – The number of nodes to generate the graph with. Node
weights will be None if this is specified. If both num_node and
weights are set this will be ignored and weights will be used.

	weights (list) – A list of node weights. If both num_node and
weights are set this will be ignored and weights will be used.

	multigraph (bool) – When set to False the output
PyGraph object will not be not be a multigraph and
won’t allow parallel edges to be added. Instead
calls which would create a parallel edge will update the existing edge.

	Returns

	The generated mesh graph

	Return type

	PyGraph

	Raises

	IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.mesh_graph(4)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.generators.mesh_graph_0_0.png]

retworkx.generators.directed_mesh_graph

	
directed_mesh_graph(num_nodes=None, weights=None, /)

	Generate a directed mesh graph where every node is connected to every other

	Parameters

	
	num_node (int) – The number of nodes to generate the graph with. Node
weights will be None if this is specified. If both num_node and
weights are set this will be ignored and weights will be used.

	weights (list) – A list of node weights. If both num_node and
weights are set this will be ignored and weights will be used.

	Returns

	The generated mesh graph

	Return type

	PyDiGraph

	Raises

	IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.directed_mesh_graph(4)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.generators.directed_mesh_graph_0_0.png]

retworkx.generators.grid_graph

	
grid_graph(rows=None, cols=None, weights=None, multigraph=True, /)

	Generate an undirected grid graph.

	Parameters

	
	rows (int) – The number of rows to generate the graph with.
If specified, cols also need to be specified

	cols (list) – The number of rows to generate the graph with.
If specified, rows also need to be specified. rows*cols
defines the number of nodes in the graph

	weights (list) – A list of node weights. Nodes are filled row wise.
If rows and cols are not specified, then a linear graph containing
all the values in weights list is created.
If number of nodes(rows*cols) is less than length of
weights list, the trailing weights are ignored.
If number of nodes(rows*cols) is greater than length of
weights list, extra nodes with None weight are appended.

	multigraph (bool) – When set to False the output
PyGraph object will not be not be a multigraph and
won’t allow parallel edges to be added. Instead
calls which would create a parallel edge will update the existing edge.

	Returns

	The generated grid graph

	Return type

	PyGraph

	Raises

	IndexError – If neither rows or cols and weights are
specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.grid_graph(2, 3)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.generators.grid_graph_0_0.png]

retworkx.generators.directed_grid_graph

	
directed_grid_graph(rows=None, cols=None, weights=None, bidirectional=False, /)

	
	Generate a directed grid graph. The edges propagate towards right and
	bottom direction if bidirectional is false

	Parameters

	
	rows (int) – The number of rows to generate the graph with.
If specified, cols also need to be specified.

	cols (list) – The number of rows to generate the graph with.
If specified, rows also need to be specified. rows*cols
defines the number of nodes in the graph.

	weights (list) – A list of node weights. Nodes are filled row wise.
If rows and cols are not specified, then a linear graph containing
all the values in weights list is created.
If number of nodes(rows*cols) is less than length of
weights list, the trailing weights are ignored.
If number of nodes(rows*cols) is greater than length of
weights list, extra nodes with None weight are appended.

	bidirectional – A parameter to indicate if edges should exist in
both directions between nodes

	Returns

	The generated grid graph

	Return type

	PyDiGraph

	Raises

	IndexError – If neither rows or cols and weights are
specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.directed_grid_graph(2, 3)
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: ../_images/retworkx.generators.directed_grid_graph_0_0.png]

retworkx.directed_gnp_random_graph

	
directed_gnp_random_graph(num_nodes, probability, seed=None, /)

	Return a \(G_{np}\) directed random graph, also known as an
Erdős-Rényi graph or a binomial graph.

For number of nodes \(n\) and probability \(p\), the \(G_{n,p}\)
graph algorithm creates \(n\) nodes, and for all the \(n (n - 1)\) possible edges,
each edge is created independently with probability \(p\).
In general, for any probability \(p\), the expected number of edges returned
is \(m = p n (n - 1)\). If \(p = 0\) or \(p = 1\), the returned
graph is not random and will always be an empty or a complete graph respectively.
An empty graph has zero edges and a complete directed graph has \(n (n - 1)\) edges.
The run time is \(O(n + m)\) where \(m\) is the expected number of edges mentioned above.
When \(p = 0\), run time always reduces to \(O(n)\), as the lower bound.
When \(p = 1\), run time always goes to \(O(n + n (n - 1))\), as the upper bound.
For other probabilities, this algorithm 1 runs in \(O(n + m)\) time.

For \(0 < p < 1\), the algorithm is based on the implementation of the networkx function
fast_gnp_random_graph 2

	Parameters

	
	num_nodes (int) – The number of nodes to create in the graph

	probability (float) – The probability of creating an edge between two nodes

	seed (int) – An optional seed to use for the random number generator

	Returns

	A PyDiGraph object

	Return type

	PyDiGraph

	1

	Vladimir Batagelj and Ulrik Brandes,
“Efficient generation of large random networks”,
Phys. Rev. E, 71, 036113, 2005.

	2

	https://github.com/networkx/networkx/blob/networkx-2.4/networkx/generators/random_graphs.py#L49-L120

retworkx.undirected_gnp_random_graph

	
undirected_gnp_random_graph(num_nodes, probability, seed=None, /)

	Return a \(G_{np}\) random undirected graph, also known as an
Erdős-Rényi graph or a binomial graph.

For number of nodes \(n\) and probability \(p\), the \(G_{n,p}\)
graph algorithm creates \(n\) nodes, and for all the \(n (n - 1)/2\) possible edges,
each edge is created independently with probability \(p\).
In general, for any probability \(p\), the expected number of edges returned
is \(m = p n (n - 1)/2\). If \(p = 0\) or \(p = 1\), the returned
graph is not random and will always be an empty or a complete graph respectively.
An empty graph has zero edges and a complete undirected graph has \(n (n - 1)/2\) edges.
The run time is \(O(n + m)\) where \(m\) is the expected number of edges mentioned above.
When \(p = 0\), run time always reduces to \(O(n)\), as the lower bound.
When \(p = 1\), run time always goes to \(O(n + n (n - 1)/2)\), as the upper bound.
For other probabilities, this algorithm 1 runs in \(O(n + m)\) time.

For \(0 < p < 1\), the algorithm is based on the implementation of the networkx function
fast_gnp_random_graph 2

	Parameters

	
	num_nodes (int) – The number of nodes to create in the graph

	probability (float) – The probability of creating an edge between two nodes

	seed (int) – An optional seed to use for the random number generator

	Returns

	A PyGraph object

	Return type

	PyGraph

	1

	Vladimir Batagelj and Ulrik Brandes,
“Efficient generation of large random networks”,
Phys. Rev. E, 71, 036113, 2005.

	2

	https://github.com/networkx/networkx/blob/networkx-2.4/networkx/generators/random_graphs.py#L49-L120

retworkx.directed_gnm_random_graph

	
directed_gnm_random_graph(num_nodes, num_edges, seed=None, /)

	Return a \(G_{nm}\) of a directed graph

Generates a random directed graph out of all the possible graphs with \(n\) nodes and
\(m\) edges. The generated graph will not be a multigraph and will not have self loops.

For \(n\) nodes, the maximum edges that can be returned is \(n (n - 1)\).
Passing \(m\) higher than that will still return the maximum number of edges.
If \(m = 0\), the returned graph will always be empty (no edges).
When a seed is provided, the results are reproducible. Passing a seed when \(m = 0\)
or \(m >= n (n - 1)\) has no effect, as the result will always be an empty or a complete graph respectively.

This algorithm has a time complexity of \(O(n + m)\)

	Parameters

	
	num_nodes (int) – The number of nodes to create in the graph

	num_edges (int) – The number of edges to create in the graph

	seed (int) – An optional seed to use for the random number generator

	Returns

	A PyDiGraph object

	Return type

	PyDiGraph

retworkx.undirected_gnm_random_graph

	
undirected_gnm_random_graph(num_nodes, probability, seed=None, /)

	Return a \(G_{nm}\) of an undirected graph

Generates a random undirected graph out of all the possible graphs with \(n\) nodes and
\(m\) edges. The generated graph will not be a multigraph and will not have self loops.

For \(n\) nodes, the maximum edges that can be returned is \(n (n - 1)/2\).
Passing \(m\) higher than that will still return the maximum number of edges.
If \(m = 0\), the returned graph will always be empty (no edges).
When a seed is provided, the results are reproducible. Passing a seed when \(m = 0\)
or \(m >= n (n - 1)/2\) has no effect, as the result will always be an empty or a complete graph respectively.

This algorithm has a time complexity of \(O(n + m)\)

	Parameters

	
	num_nodes (int) – The number of nodes to create in the graph

	num_edges (int) – The number of edges to create in the graph

	seed (int) – An optional seed to use for the random number generator

	Returns

	A PyGraph object

	Return type

	PyGraph

retworkx.bfs_successors

	
bfs_successors(graph, node, /)

	Return successors in a breadth-first-search from a source node.

The return format is [(Parent Node, [Children Nodes])] in a bfs order
from the source node provided.

	Parameters

	
	graph (PyDiGraph) – The DAG to get the bfs_successors from

	node (int) – The index of the dag node to get the bfs successors for

	Returns

	A list of nodes’s data and their children in bfs order. The
BFSSuccessors class that is returned is a custom container class that
implements the sequence protocol. This can be used as a python list
with index based access.

	Return type

	BFSSuccessors

retworkx.dag_longest_path

	
dag_longest_path(graph, /)

	Find the longest path in a DAG

	Parameters

	graph (PyDiGraph) – The graph to find the longest path on. The input
object must be a DAG without a cycle.

	Returns

	The node indices of the longest path on the DAG

	Return type

	NodeIndices

	Raises

	
	Exception – If an unexpected error occurs or a path can’t be found

	DAGHasCycle – If the input PyDiGraph has a cycle

retworkx.dag_longest_path_length

	
dag_longest_path_length(graph, /)

	Find the length of the longest path in a DAG

	Parameters

	graph (PyDiGraph) – The graph to find the longest path on. The input
object must be a DAG without a cycle.

	Returns

	The longest path length on the DAG

	Return type

	int

	Raises

	
	Exception – If an unexpected error occurs or a path can’t be found

	DAGHasCycle – If the input PyDiGraph has a cycle

retworkx.number_weakly_connected_components

	
number_weakly_connected_components(graph, /)

	Find the number of weakly connected components in a DAG.

	Parameters

	graph (PyDiGraph) – The graph to find the number of weakly connected
components on

	Returns

	The number of weakly connected components in the DAG

	Return type

	int

retworkx.weakly_connected_components

	
weakly_connected_components(graph, /)

	Find the weakly connected components in a directed graph

	Parameters

	graph (PyDiGraph) – The graph to find the weakly connected components
in

	Returns

	A list of sets where each set it a weakly connected component of
the graph

	Return type

	list

retworkx.is_weakly_connected

	
is_weakly_connected(graph, /)

	Check if the graph is weakly connected

	Parameters

	graph (PyDiGraph) – The graph to check if it is weakly connected

	Returns

	Whether the graph is weakly connected or not

	Return type

	bool

	Raises

	NullGraph – If an empty graph is passed in

retworkx.is_directed_acyclic_graph

	
is_directed_acyclic_graph(graph, /)

	Check that the PyDiGraph or PyDAG doesn’t have a cycle

	Parameters

	graph (PyDiGraph) – The graph to check for cycles

	Returns

	True if there are no cycles in the input graph, False
if there are cycles

	Return type

	bool

retworkx.is_isomorphic

	
is_isomorphic(first, second, /)

	Determine if 2 graphs are structurally isomorphic

This checks if 2 graphs are structurally isomorphic (it doesn’t match
the contents of the nodes or edges on the graphs).

	Parameters

	
	first (PyDiGraph) – The first graph to compare

	second (PyDiGraph) – The second graph to compare

	Returns

	True if the 2 graphs are structurally isomorphic, False
if they are not

	Return type

	bool

retworkx.is_isomorphic_node_match

	
is_isomorphic_node_match(first, second, matcher, /)

	Determine if 2 DAGs are isomorphic

This checks if 2 graphs are isomorphic both structurally and also
comparing the node data using the provided matcher function. The matcher
function takes in 2 node data objects and will compare them. A simple
example that checks if they’re just equal would be:

graph_a = retworkx.PyDAG()
graph_b = retworkx.PyDAG()
retworkx.is_isomorphic_node_match(graph_a, graph_b,
 lambda x, y: x == y)

	Parameters

	
	first (PyDiGraph) – The first graph to compare

	second (PyDiGraph) – The second graph to compare

	matcher (callable) – A python callable object that takes 2 positional
one for each node data object. If the return of this
function evaluates to True then the nodes passed to it are vieded as
matching.

	Returns

	True if the 2 graphs are isomorphic False if they are
not.

	Return type

	bool

retworkx.topological_sort

	
topological_sort(graph, /)

	Return the topological sort of node indexes from the provided graph

	Parameters

	graph (PyDiGraph) – The DAG to get the topological sort on

	Returns

	A list of node indices topologically sorted.

	Return type

	NodeIndices

	Raises

	DAGHasCycle – if a cycle is encountered while sorting the graph

retworkx.descendants

	
descendants(graph, node, /)

	Return the descendants of a node in a graph.

This differs from PyDiGraph.successors() method in that
successors` returns only nodes with a direct edge out of the provided
node. While this function returns all nodes that have a path from the
provided node.

	Parameters

	
	graph (PyDiGraph) – The graph to get the descendants from

	node (int) – The index of the graph node to get the descendants for

	Returns

	A list of node indexes of descendants of provided node.

	Return type

	list

retworkx.ancestors

	
ancestors(graph, node, /)

	Return the ancestors of a node in a graph.

This differs from PyDiGraph.predecessors() method in that
predecessors returns only nodes with a direct edge into the provided
node. While this function returns all nodes that have a path into the
provided node.

	Parameters

	
	graph (PyDiGraph) – The graph to get the descendants from

	node (int) – The index of the graph node to get the ancestors for

	Returns

	A list of node indexes of ancestors of provided node.

	Return type

	list

retworkx.lexicographical_topological_sort

	
lexicographical_topological_sort(dag, key, /)

	Get the lexicographical topological sorted nodes from the provided DAG

This function returns a list of nodes data in a graph lexicographically
topologically sorted using the provided key function.

	Parameters

	
	dag (PyDiGraph) – The DAG to get the topological sorted nodes from

	key (callable) – key is a python function or other callable that
gets passed a single argument the node data from the graph and is
expected to return a string which will be used for sorting.

	Returns

	A list of node’s data lexicographically topologically sorted.

	Return type

	list

retworkx.graph_distance_matrix

	
graph_distance_matrix(graph, /, parallel_threshold=300)

	Get the distance matrix for an undirected graph

This differs from functions like digraph_floyd_warshall_numpy in that the
edge weight/data payload is not used and each edge is treated as a
distance of 1.

This function is also multithreaded and will run in parallel if the number
of nodes in the graph is above the value of paralllel_threshold (it
defaults to 300). If the function will be running in parallel the env var
RAYON_NUM_THREADS can be used to adjust how many threads will be used.

	Parameters

	
	graph (PyGraph) – The graph to get the distance matrix for

	parallel_threshold (int) – The number of nodes to calculate the
the distance matrix in parallel at. It defaults to 300, but this can
be tuned

	Returns

	The distance matrix

	Return type

	numpy.ndarray

retworkx.digraph_distance_matrix

	
digraph_distance_matrix(graph, /, parallel_threshold=300, as_undirected=False)

	Get the distance matrix for a directed graph

This differs from functions like digraph_floyd_warshall_numpy in that the
edge weight/data payload is not used and each edge is treated as a
distance of 1.

This function is also multithreaded and will run in parallel if the number
of nodes in the graph is above the value of parallel_threshold (it
defaults to 300). If the function will be running in parallel the env var
RAYON_NUM_THREADS can be used to adjust how many threads will be used.

	Parameters

	
	graph (PyDiGraph) – The graph to get the distance matrix for

	parallel_threshold (int) – The number of nodes to calculate the
the distance matrix in parallel at. It defaults to 300, but this can
be tuned

	as_undirected (bool) – If set to True the input directed graph
will be treat as if each edge was bidirectional/undirected in the
output distance matrix.

	Returns

	The distance matrix

	Return type

	numpy.ndarray

retworkx.floyd_warshall

	
floyd_warshall(dag, /)

	Return the shortest path lengths between ever pair of nodes that has a
path connecting them

The runtime is \(O(|N|^3 + |E|)\) where \(|N|\) is the number
of nodes and \(|E|\) is the number of edges.

This is done with the Floyd Warshall algorithm:

	Process all edges by setting the distance from the parent to
the child equal to the edge weight.

	Iterate through every pair of nodes (source, target) and an additional
itermediary node (w). If the distance from source \(\rightarrow\) w
\(\rightarrow\) target is less than the distance from source
\(\rightarrow\) target, update the source \(\rightarrow\) target
distance (to pass through w).

The return format is {Source Node: {Target Node: Distance}}.

Note

Paths that do not exist are simply not found in the return dictionary,
rather than setting the distance to infinity, or -1.

Note

Edge weights are restricted to 1 in the current implementation.

	Parameters

	graph (PyDigraph) – The DiGraph to get all shortest paths from

	Returns

	A dictionary of shortest paths

	Return type

	dict

retworkx.graph_floyd_warshall_numpy

	
graph_floyd_warshall_numpy(graph, /, weight_fn=None, default_weight=1.0)

	Find all-pairs shortest path lengths using Floyd’s algorithm

Floyd’s algorithm is used for finding shortest paths in dense graphs
or graphs with negative weights (where Dijkstra’s algorithm fails).

	Parameters

	
	graph (PyGraph) – The graph to run Floyd’s algorithm on

	weight_fn – A callable object (function, lambda, etc) which
will be passed the edge object and expected to return a float. This
tells retworkx/rust how to extract a numerical weight as a float
for edge object. Some simple examples are:

graph_floyd_warshall_numpy(graph, weight_fn: lambda x: 1)

to return a weight of 1 for all edges. Also:

graph_floyd_warshall_numpy(graph, weight_fn: lambda x: float(x))

to cast the edge object as a float as the weight.

	Returns

	A matrix of shortest path distances between nodes. If there is no
path between two nodes then the corresponding matrix entry will be
np.inf.

	Return type

	numpy.ndarray

retworkx.digraph_floyd_warshall_numpy

	
digraph_floyd_warshall_numpy()

	Find all-pairs shortest path lengths using Floyd’s algorithm

Floyd’s algorithm is used for finding shortest paths in dense graphs
or graphs with negative weights (where Dijkstra’s algorithm fails).

	Parameters

	
	graph (PyDiGraph) – The directed graph to run Floyd’s algorithm on

	weight_fn – A callable object (function, lambda, etc) which
will be passed the edge object and expected to return a float. This
tells retworkx/rust how to extract a numerical weight as a float
for edge object. Some simple examples are:

graph_floyd_warshall_numpy(graph, weight_fn: lambda x: 1)

to return a weight of 1 for all edges. Also:

graph_floyd_warshall_numpy(graph, weight_fn: lambda x: float(x))

to cast the edge object as a float as the weight.

	as_undirected – If set to true each directed edge will be treated as
bidirectional/undirected.

	Returns

	A matrix of shortest path distances between nodes. If there is no
path between two nodes then the corresponding matrix entry will be
np.inf.

	Return type

	numpy.ndarray

retworkx.collect_runs

	
collect_runs(graph, filter)

	Collect runs that match a filter function

A run is a path of nodes where there is only a single successor and all
nodes in the path match the given condition. Each node in the graph can
appear in only a single run.

	Parameters

	
	graph (PyDiGraph) – The graph to find runs in

	filter_fn – The filter function to use for matching nodes. It takes
in one argument, the node data payload/weight object, and will return a
boolean whether the node matches the conditions or not. If it returns
False it will skip that node.

	Returns

	a list of runs, where each run is a list of node data
payload/weight for the nodes in the run

	Return type

	list

retworkx.layers

	
layers(dag, first_layer, /)

	Return a list of layers

A layer is a subgraph whose nodes are disjoint, i.e.,
a layer has depth 1. The layers are constructed using a greedy algorithm.

	Parameters

	
	graph (PyDiGraph) – The DAG to get the layers from

	first_layer (list) – A list of node ids for the first layer. This
will be the first layer in the output

	Returns

	A list of layers, each layer is a list of node data

	Return type

	list

	Raises

	InvalidNode – If a node index in first_layer is not in the graph

retworkx.digraph_adjacency_matrix

	
digraph_adjacency_matrix(graph, /, weight_fn=None, default_weight=1.0)

	Return the adjacency matrix for a PyDiGraph object

In the case where there are multiple edges between nodes the value in the
output matrix will be the sum of the edges’ weights.

	Parameters

	
	graph (PyDiGraph) – The DiGraph used to generate the adjacency matrix
from

	weight_fn (callable) – A callable object (function, lambda, etc) which
will be passed the edge object and expected to return a float. This
tells retworkx/rust how to extract a numerical weight as a float
for edge object. Some simple examples are:

dag_adjacency_matrix(dag, weight_fn: lambda x: 1)

to return a weight of 1 for all edges. Also:

dag_adjacency_matrix(dag, weight_fn: lambda x: float(x))

to cast the edge object as a float as the weight. If this is not
specified a default value (either default_weight or 1) will be used
for all edges.

	default_weight (float) –
	If weight_fn is not used this can be
	optionally used to specify a default weight to use for all edges.

	return

	The adjacency matrix for the input dag as a numpy array

	rtype

	numpy.ndarray

retworkx.graph_adjacency_matrix

	
graph_adjacency_matrix(graph, /, weight_fn=None, default_weight=1.0)

	Return the adjacency matrix for a PyGraph class

In the case where there are multiple edges between nodes the value in the
output matrix will be the sum of the edges’ weights.

	Parameters

	
	graph (PyGraph) – The graph used to generate the adjacency matrix from

	weight_fn – A callable object (function, lambda, etc) which
will be passed the edge object and expected to return a float. This
tells retworkx/rust how to extract a numerical weight as a float
for edge object. Some simple examples are:

graph_adjacency_matrix(graph, weight_fn: lambda x: 1)

to return a weight of 1 for all edges. Also:

graph_adjacency_matrix(graph, weight_fn: lambda x: float(x))

to cast the edge object as a float as the weight. If this is not
specified a default value (either default_weight or 1) will be used
for all edges.

	default_weight (float) – If weight_fn is not used this can be
optionally used to specify a default weight to use for all edges.

	Returns

	The adjacency matrix for the input dag as a numpy array

	Return type

	numpy.ndarray

retworkx.graph_all_simple_paths

	
graph_all_simple_paths()

	Return all simple paths between 2 nodes in a PyGraph object

A simple path is a path with no repeated nodes.

	Parameters

	
	graph (PyGraph) – The graph to find the path in

	from (int) – The node index to find the paths from

	to (int) – The node index to find the paths to

	min_depth (int) – The minimum depth of the path to include in the output
list of paths. By default all paths are included regardless of depth,
setting to 0 will behave like the default.

	cutoff (int) – The maximum depth of path to include in the output list
of paths. By default includes all paths regardless of depth, setting to
0 will behave like default.

	Returns

	A list of lists where each inner list is a path of node indices

	Return type

	list

retworkx.digraph_all_simple_paths

	
digraph_all_simple_paths()

	Return all simple paths between 2 nodes in a PyDiGraph object

A simple path is a path with no repeated nodes.

	Parameters

	
	graph (PyDiGraph) – The graph to find the path in

	from (int) – The node index to find the paths from

	to (int) – The node index to find the paths to

	min_depth (int) – The minimum depth of the path to include in the output
list of paths. By default all paths are included regardless of depth,
sett to 0 will behave like the default.

	cutoff (int) – The maximum depth of path to include in the output list
of paths. By default includes all paths regardless of depth, setting to
0 will behave like default.

	Returns

	A list of lists where each inner list is a path

	Return type

	list

retworkx.graph_astar_shortest_path

	
graph_astar_shortest_path(graph, node, goal_fn, edge_cost, estimate_cost, /)

	Compute the A* shortest path for a PyGraph

	Parameters

	
	graph (PyGraph) – The input graph to use

	node (int) – The node index to compute the path from

	goal_fn – A python callable that will take in 1 parameter, a node’s data
object and will return a boolean which will be True if it is the finish
node.

	edge_cost_fn – A python callable that will take in 1 parameter, an edge’s
data object and will return a float that represents the cost of that
edge. It must be non-negative.

	estimate_cost_fn – A python callable that will take in 1 parameter, a
node’s data object and will return a float which represents the estimated
cost for the next node. The return must be non-negative. For the
algorithm to find the actual shortest path, it should be admissible,
meaning that it should never overestimate the actual cost to get to the
nearest goal node.

	Returns

	The computed shortest path between node and finish as a list
of node indices.

	Return type

	NodeIndices

retworkx.digraph_astar_shortest_path

	
digraph_astar_shortest_path(graph, node, goal_fn, edge_cost, estimate_cost, /)

	Compute the A* shortest path for a PyDiGraph

	Parameters

	
	graph (PyDiGraph) – The input graph to use

	node (int) – The node index to compute the path from

	goal_fn – A python callable that will take in 1 parameter, a node’s
data object and will return a boolean which will be True if it is the
finish node.

	edge_cost_fn – A python callable that will take in 1 parameter, an
edge’s data object and will return a float that represents the cost of
that edge. It must be non-negative.

	estimate_cost_fn – A python callable that will take in 1 parameter, a
node’s data object and will return a float which represents the
estimated cost for the next node. The return must be non-negative. For
the algorithm to find the actual shortest path, it should be
admissible, meaning that it should never overestimate the actual cost
to get to the nearest goal node.

	Returns

	The computed shortest path between node and finish as a list
of node indices.

	Return type

	NodeIndices

retworkx.graph_dijkstra_shortest_paths

	
graph_dijkstra_shortest_paths()

	Find the shortest path from a node

This function will generate the shortest path from a source node using
Dijkstra’s algorithm.

	Parameters

	
	graph (PyGraph) –

	source (int) – The node index to find paths from

	target (int) – An optional target to find a path to

	weight_fn – An optional weight function for an edge. It will accept
a single argument, the edge’s weight object and will return a float which
will be used to represent the weight/cost of the edge

	default_weight (float) – If weight_fn isn’t specified this optional
float value will be used for the weight/cost of each edge.

	as_undirected (bool) – If set to true the graph will be treated as
undirected for finding the shortest path.

	Returns

	Dictionary of paths. The keys are destination node indices and
the dict values are lists of node indices making the path.

	Return type

	dict

retworkx.digraph_dijkstra_shortest_paths

	
digraph_dijkstra_shortest_paths()

	Find the shortest path from a node

This function will generate the shortest path from a source node using
Dijkstra’s algorithm.

	Parameters

	
	graph (PyDiGraph) –

	source (int) – The node index to find paths from

	target (int) – An optional target path to find the path

	weight_fn – An optional weight function for an edge. It will accept
a single argument, the edge’s weight object and will return a float which
will be used to represent the weight/cost of the edge

	default_weight (float) – If weight_fn isn’t specified this optional
float value will be used for the weight/cost of each edge.

	as_undirected (bool) – If set to true the graph will be treated as
undirected for finding the shortest path.

	Returns

	Dictionary of paths. The keys are destination node indices and
the dict values are lists of node indices making the path.

	Return type

	dict

retworkx.graph_dijkstra_shortest_path_lengths

	
graph_dijkstra_shortest_path_lengths(graph, node, edge_cost_fn, /, goal=None)

	Compute the lengths of the shortest paths for a PyGraph object using
Dijkstra’s algorithm

	Parameters

	
	graph (PyGraph) – The input graph to use

	node (int) – The node index to use as the source for finding the
shortest paths from

	edge_cost_fn – A python callable that will take in 1 parameter, an
edge’s data object and will return a float that represents the
cost/weight of that edge. It must be non-negative

	goal (int) – An optional node index to use as the end of the path.
When specified the traversal will stop when the goal is reached and
the output dictionary will only have a single entry with the length
of the shortest path to the goal node.

	Returns

	A dictionary of the shortest paths from the provided node where
the key is the node index of the end of the path and the value is the
cost/sum of the weights of path

	Return type

	dict

retworkx.digraph_dijkstra_shortest_path_lengths

	
digraph_dijkstra_shortest_path_lengths(graph, node, edge_cost_fn, /, goal=None)

	Compute the lengths of the shortest paths for a PyDiGraph object using
Dijkstra’s algorithm

	Parameters

	
	graph (PyDiGraph) – The input graph to use

	node (int) – The node index to use as the source for finding the
shortest paths from

	edge_cost_fn – A python callable that will take in 1 parameter, an
edge’s data object and will return a float that represents the
cost/weight of that edge. It must be non-negative

	goal (int) – An optional node index to use as the end of the path.
When specified the traversal will stop when the goal is reached and
the output dictionary will only have a single entry with the length
of the shortest path to the goal node.

	Returns

	A dictionary of the shortest paths from the provided node where
the key is the node index of the end of the path and the value is the
cost/sum of the weights of path

	Return type

	dict

retworkx.graph_k_shortest_path_lengths

	
graph_k_shortest_path_lengths(graph, start, k, edge_cost, /, goal=None)

	Compute the length of the kth shortest path

Computes the lengths of the kth shortest path from start to every
reachable node.

Computes in \(O(k * (|E| + |V|*log(|V|)))\) time (average).

	Parameters

	
	graph (PyGraph) – The graph to find the shortest paths in

	start (int) – The node index to find the shortest paths from

	k (int) – The kth shortest path to find the lengths of

	edge_cost – A python callable that will receive an edge payload and
return a float for the cost of that eedge

	goal (int) – An optional goal node index, if specified the output
dictionary

	Returns

	A dict of lengths where the key is the destination node index and
the value is the length of the path.

	Return type

	dict

retworkx.digraph_k_shortest_path_lengths

	
digraph_k_shortest_path_lengths(graph, start, k, edge_cost, /, goal=None)

	Compute the length of the kth shortest path

Computes the lengths of the kth shortest path from start to every
reachable node.

Computes in \(O(k * (|E| + |V|*log(|V|)))\) time (average).

	Parameters

	
	graph (PyGraph) – The graph to find the shortest paths in

	start (int) – The node index to find the shortest paths from

	k (int) – The kth shortest path to find the lengths of

	edge_cost – A python callable that will receive an edge payload and
return a float for the cost of that eedge

	goal (int) – An optional goal node index, if specified the output
dictionary

	Returns

	A dict of lengths where the key is the destination node index and
the value is the length of the path.

	Return type

	dict

retworkx.graph_greedy_color

	
graph_greedy_color(graph, /)

	Color a PyGraph using a largest_first strategy greedy graph coloring.

	Parameters

	PyGraph – The input PyGraph object to color

	Returns

	A dictionary where keys are node indices and the value is
the color

	Return type

	dict

retworkx.cycle_basis

	
cycle_basis(graph, /, root=None)

	Return a list of cycles which form a basis for cycles of a given PyGraph

A basis for cycles of a graph is a minimal collection of
cycles such that any cycle in the graph can be written
as a sum of cycles in the basis. Here summation of cycles
is defined as the exclusive or of the edges.

This is adapted from algorithm CACM 491 1.

	Parameters

	
	graph (PyGraph) – The graph to find the cycle basis in

	root (int) – Optional index for starting node for basis

	Returns

	A list of cycle lists. Each list is a list of node ids which
forms a cycle (loop) in the input graph

	Return type

	list

	1

	Paton, K. An algorithm for finding a fundamental set of
cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518.

retworkx.strongly_connected_components

	
strongly_connected_components(graph, /)

	Compute the strongly connected components for a directed graph

This function is implemented using Kosaraju’s algorithm

	Parameters

	graph (PyDiGraph) – The input graph to find the strongly connected
components for.

	Returns

	A list of list of node ids for strongly connected components

	Return type

	list

retworkx.graph_dfs_edges

	
graph_dfs_edges(graph, /, source=None)

	Get edge list in depth first order

	Parameters

	
	graph (PyGraph) – The graph to get the DFS edge list from

	source (int) – An optional node index to use as the starting node
for the depth-first search. The edge list will only return edges in
the components reachable from this index. If this is not specified
then a source will be chosen arbitrarly and repeated until all
components of the graph are searched.

	Returns

	A list of edges as a tuple of the form (source, target) in
depth-first order

	Return type

	EdgeList

retworkx.digraph_dfs_edges

	
digraph_dfs_edges(graph, /, source=None)

	Get edge list in depth first order

	Parameters

	
	graph (PyDiGraph) – The graph to get the DFS edge list from

	source (int) – An optional node index to use as the starting node
for the depth-first search. The edge list will only return edges in
the components reachable from this index. If this is not specified
then a source will be chosen arbitrarly and repeated until all
components of the graph are searched.

	Returns

	A list of edges as a tuple of the form (source, target) in
depth-first order

	Return type

	EdgeList

retworkx.digraph_find_cycle

	
digraph_find_cycle(graph, /, source=None)

	Return the first cycle encountered during DFS of a given PyDiGraph,
empty list is returned if no cycle is found

	Parameters

	
	graph (PyDiGraph) – The graph to find the cycle in

	source (int) – Optional index to find a cycle for. If not specified an
arbitrary node will be selected from the graph.

	Returns

	A list describing the cycle. The index of node ids which
forms a cycle (loop) in the input graph

	Return type

	EdgeList

retworkx.digraph_union

	
digraph_union(first, second, merge_nodes, merge_edges, /)

	Return a new PyDiGraph by forming a union from two input PyDiGraph objects

The algorithm in this function operates in three phases:

	Add all the nodes from second into first. operates in O(n),
with n being number of nodes in b.

	Merge nodes from second over first given that:

	The merge_nodes is True. operates in O(n^2), with n being the
number of nodes in second.

	The respective node in second and first share the same
weight/data payload.

	Adds all the edges from second to first. If the merge_edges
parameter is True and the respective edge in second and
first`` share the same weight/data payload they will be merged
together.

	param PyDiGraph first

	The first directed graph object

	param PyDiGraph second

	The second directed graph object

	param bool merge_nodes

	If set to True nodes will be merged between
second and first if the weights are equal.

	param bool merge_edges

	If set to True edges will be merged between
second and first if the weights are equal.

	returns

	A new PyDiGraph object that is the union of second and
first. It’s worth noting the weight/data payload objects are
passed by reference from first and second to this new object.

	rtype

	PyDiGraph

retworkx.is_matching

	
is_matching(graph, matching, /)

	Check if matching is valid for graph

A matching in a graph is a set of edges in which no two distinct
edges share a common endpoint.

	Parameters

	
	graph (PyDiGraph) – The graph to check if the matching is valid for

	matching (set) – A set of node index tuples for each edge in the
matching.

	Returns

	Whether the provided matching is a valid matching for the graph

	Return type

	bool

retworkx.is_maximal_matching

	
is_maximal_matching(graph, matching, /)

	Check if a matching is a maximal (not maximum) matching for a graph

A maximal matching in a graph is a matching in which adding any
edge would cause the set to no longer be a valid matching.

Note

This is not checking for a maximum (globally optimal) matching, but
a maximal (locally optimal) matching.

	Parameters

	
	graph (PyDiGraph) – The graph to check if the matching is maximal for.

	matching (set) – A set of node index tuples for each edge in the
matching.

	Returns

	Whether the provided matching is a valid matching and whether it
is maximal or not.

	Return type

	bool

retworkx.max_weight_matching

	
max_weight_matching(graph, /, max_cardinality=False, weight_fn=None, default_weight=1, verify_optimum=False)

	Compute a maximum-weighted matching for a PyGraph

A matching is a subset of edges in which no node occurs more than once.
The weight of a matching is the sum of the weights of its edges.
A maximal matching cannot add more edges and still be a matching.
The cardinality of a matching is the number of matched edges.

This function takes time \(O(n^3)\) where n is the number of nodes
in the graph.

This method is based on the “blossom” method for finding augmenting
paths and the “primal-dual” method for finding a matching of maximum
weight, both methods invented by Jack Edmonds 1.

	Parameters

	
	graph (PyGraph) – The undirected graph to compute the max weight
matching for. Expects to have no parallel edges (multigraphs are
untested currently).

	max_cardinality (bool) – If True, compute the maximum-cardinality
matching with maximum weight among all maximum-cardinality matchings.
Defaults False.

	weight_fn (callable) – An optional callable that will be passed a
single argument the edge object for each edge in the graph. It is
expected to return an int weight for that edge. For example,
if the weights are all integers you can use: lambda x: x. If not
specified the value for default_weight will be used for all
edge weights.

	default_weight (int) – The int value to use for all edge weights
in the graph if weight_fn is not specified. Defaults to 1.

	verify_optimum (bool) – A boolean flag to run a check that the found
solution is optimum. If set to true an exception will be raised if
the found solution is not optimum. This is mostly useful for testing.

	Returns

	A set of tuples ofthe matching, Note that only a single
direction will be listed in the output, for example:
{(0, 1),}.

	Return type

	set

	1

	“Efficient Algorithms for Finding Maximum Matching in Graphs”,
Zvi Galil, ACM Computing Surveys, 1986.

retworkx.distance_matrix

	
distance_matrix(graph, parallel_threshold=300)

	
distance_matrix(graph: retworkx.PyDiGraph, parallel_threshold=300, as_undirected=False)

	
distance_matrix(graph: retworkx.PyGraph, parallel_threshold=300)

	Get the distance matrix for a graph

This differs from functions like floyd_warshall_numpy() in
that the edge weight/data payload is not used and each edge is treated as a
distance of 1.

This function is also multithreaded and will run in parallel if the number
of nodes in the graph is above the value of parallel_threshold (it
defaults to 300). If the function will be running in parallel the env var
RAYON_NUM_THREADS can be used to adjust how many threads will be used.

	Parameters

	
	graph – The graph to get the distance matrix for, can be either a
PyGraph or PyDiGraph.

	parallel_threshold (int) – The number of nodes to calculate the
the distance matrix in parallel at. It defaults to 300, but this can
be tuned

	as_undirected (bool) – If set to True the input directed graph
will be treat as if each edge was bidirectional/undirected in the
output distance matrix.

	Returns

	The distance matrix

	Return type

	numpy.ndarray

retworkx.floyd_warshall_numpy

	
floyd_warshall_numpy(graph, weight_fn=None, default_weight=1.0)

	
floyd_warshall_numpy(graph: retworkx.PyDiGraph, weight_fn=None, default_weight=1.0)

	
floyd_warshall_numpy(graph: retworkx.PyGraph, weight_fn=None, default_weight=1.0)

	Return the adjacency matrix for a graph object

In the case where there are multiple edges between nodes the value in the
output matrix will be the sum of the edges’ weights.

	Parameters

	
	graph – The graph used to generate the adjacency matrix from. Can
either be a PyGraph or PyDiGraph

	weight_fn (callable) – A callable object (function, lambda, etc) which
will be passed the edge object and expected to return a float. This
tells retworkx/rust how to extract a numerical weight as a float
for edge object. Some simple examples are:

adjacency_matrix(graph, weight_fn: lambda x: 1)

to return a weight of 1 for all edges. Also:

adjacency_matrix(graph, weight_fn: lambda x: float(x))

to cast the edge object as a float as the weight. If this is not
specified a default value (either default_weight or 1) will be used
for all edges.

	default_weight (float) –
	If weight_fn is not used this can be
	optionally used to specify a default weight to use for all edges.

	return

	The adjacency matrix for the input dag as a numpy array

	rtype

	numpy.ndarray

retworkx.adjacency_matrix

	
adjacency_matrix(graph, weight_fn=None, default_weight=1.0)

	
adjacency_matrix(graph: retworkx.PyDiGraph, weight_fn=None, default_weight=1.0)

	
adjacency_matrix(graph: retworkx.PyGraph, weight_fn=None, default_weight=1.0)

	Return the adjacency matrix for a graph object

In the case where there are multiple edges between nodes the value in the
output matrix will be the sum of the edges’ weights.

	Parameters

	
	graph – The graph used to generate the adjacency matrix from. Can
either be a PyGraph or PyDiGraph

	weight_fn (callable) – A callable object (function, lambda, etc) which
will be passed the edge object and expected to return a float. This
tells retworkx/rust how to extract a numerical weight as a float
for edge object. Some simple examples are:

adjacency_matrix(graph, weight_fn: lambda x: 1)

to return a weight of 1 for all edges. Also:

adjacency_matrix(graph, weight_fn: lambda x: float(x))

to cast the edge object as a float as the weight. If this is not
specified a default value (either default_weight or 1) will be used
for all edges.

	default_weight (float) –
	If weight_fn is not used this can be
	optionally used to specify a default weight to use for all edges.

	return

	The adjacency matrix for the input dag as a numpy array

	rtype

	numpy.ndarray

retworkx.all_simple_paths

	
all_simple_paths(graph, from_, to, min_depth=None, cutoff=None)

	
all_simple_paths(graph: retworkx.PyDiGraph, from_, to, min_depth=None, cutoff=None)

	
all_simple_paths(graph: retworkx.PyGraph, from_, to, min_depth=None, cutoff=None)

	Return all simple paths between 2 nodes in a PyGraph object

A simple path is a path with no repeated nodes.

	Parameters

	
	graph – The graph to find the path in. Can either be a
class:~retworkx.PyGraph or PyDiGraph

	from (int) – The node index to find the paths from

	to (int) – The node index to find the paths to

	min_depth (int) – The minimum depth of the path to include in the
output list of paths. By default all paths are included regardless of
depth, setting to 0 will behave like the default.

	cutoff (int) – The maximum depth of path to include in the output list
of paths. By default includes all paths regardless of depth, setting to
0 will behave like default.

	Returns

	A list of lists where each inner list is a path of node indices

	Return type

	list

retworkx.astar_shortest_path

	
astar_shortest_path(graph, node, goal_fn, edge_cost_fn, estimate_cost_fn)

	
astar_shortest_path(graph: retworkx.PyDiGraph, node, goal_fn, edge_cost_fn, estimate_cost_fn)

	
astar_shortest_path(graph: retworkx.PyGraph, node, goal_fn, edge_cost_fn, estimate_cost_fn)

	Compute the A* shortest path for a graph

	Parameters

	
	graph – The input graph to use. Can
either be a PyGraph or PyDiGraph

	node (int) – The node index to compute the path from

	goal_fn – A python callable that will take in 1 parameter, a node’s
data object and will return a boolean which will be True if it is the
finish node.

	edge_cost_fn – A python callable that will take in 1 parameter, an
edge’s data object and will return a float that represents the cost
of that edge. It must be non-negative.

	estimate_cost_fn – A python callable that will take in 1 parameter, a
node’s data object and will return a float which represents the
estimated cost for the next node. The return must be non-negative. For
the algorithm to find the actual shortest path, it should be
admissible, meaning that it should never overestimate the actual cost
to get to the nearest goal node.

	Returns

	The computed shortest path between node and finish as a list
of node indices.

	Return type

	NodeIndices

retworkx.dijkstra_shortest_paths

	
dijkstra_shortest_paths(graph, source, target=None, weight_fn=None, default_weight=1.0, as_undirected=False)

	
dijkstra_shortest_paths(graph: retworkx.PyDiGraph, source, target=None, weight_fn=None, default_weight=1.0, as_undirected=False)

	
dijkstra_shortest_paths(graph: retworkx.PyGraph, source, target=None, weight_fn=None, default_weight=1.0)

	Find the shortest path from a node

This function will generate the shortest path from a source node using
Dijkstra’s algorithm.

	Parameters

	
	graph – The input graph to use. Can either be a
PyGraph or PyDiGraph

	source (int) – The node index to find paths from

	target (int) – An optional target to find a path to

	weight_fn – An optional weight function for an edge. It will accept
a single argument, the edge’s weight object and will return a float
which will be used to represent the weight/cost of the edge

	default_weight (float) – If weight_fn isn’t specified this optional
float value will be used for the weight/cost of each edge.

	as_undirected (bool) – If set to true the graph will be treated as
undirected for finding the shortest path. This only works with a
PyDiGraph input for graph

	Returns

	Dictionary of paths. The keys are destination node indices and
the dict values are lists of node indices making the path.

	Return type

	dict

retworkx.dijkstra_shortest_path_lengths

	
dijkstra_shortest_path_lengths(graph, node, edge_cost_fn, goal=None)

	
dijkstra_shortest_path_lengths(graph: retworkx.PyDiGraph, node, edge_cost_fn, goal=None)

	
dijkstra_shortest_path_lengths(graph: retworkx.PyGraph, node, edge_cost_fn, goal=None)

	Compute the lengths of the shortest paths for a graph object using
Dijkstra’s algorithm.

	Parameters

	
	graph – The input graph to use. Can either be a
PyGraph or PyDiGraph

	node (int) – The node index to use as the source for finding the
shortest paths from

	edge_cost_fn – A python callable that will take in 1 parameter, an
edge’s data object and will return a float that represents the
cost/weight of that edge. It must be non-negative

	goal (int) – An optional node index to use as the end of the path.
When specified the traversal will stop when the goal is reached and
the output dictionary will only have a single entry with the length
of the shortest path to the goal node.

	Returns

	A dictionary of the shortest paths from the provided node where
the key is the node index of the end of the path and the value is the
cost/sum of the weights of path

	Return type

	dict

retworkx.k_shortest_path_lengths

	
k_shortest_path_lengths(graph, start, k, edge_cost, goal=None)

	
k_shortest_path_lengths(graph: retworkx.PyDiGraph, start, k, edge_cost, goal=None)

	
k_shortest_path_lengths(graph: retworkx.PyGraph, start, k, edge_cost, goal=None)

	Compute the length of the kth shortest path

Computes the lengths of the kth shortest path from start to every
reachable node.

Computes in \(O(k * (|E| + |V|*log(|V|)))\) time (average).

	Parameters

	
	graph – The graph to find the shortest paths in. Can either be a
PyGraph or PyDiGraph

	start (int) – The node index to find the shortest paths from

	k (int) – The kth shortest path to find the lengths of

	edge_cost – A python callable that will receive an edge payload and
return a float for the cost of that eedge

	goal (int) – An optional goal node index, if specified the output
dictionary

	Returns

	A dict of lengths where the key is the destination node index and
the value is the length of the path.

	Return type

	dict

retworkx.dfs_edges

	
dfs_edges(graph, source)

	
dfs_edges(graph: retworkx.PyDiGraph, source)

	
dfs_edges(graph: retworkx.PyGraph, source)

	Get edge list in depth first order

	Parameters

	
	graph (PyGraph) – The graph to get the DFS edge list from

	source (int) – An optional node index to use as the starting node
for the depth-first search. The edge list will only return edges in
the components reachable from this index. If this is not specified
then a source will be chosen arbitrarly and repeated until all
components of the graph are searched.

	Returns

	A list of edges as a tuple of the form (source, target) in
depth-first order

	Return type

	EdgeList
raise TypeError(“Invalid Input Type %s for graph” % type(graph))

retworkx.InvalidNode

	
exception InvalidNode

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

retworkx.DAGWouldCycle

	
exception DAGWouldCycle

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

retworkx.NoEdgeBetweenNodes

	
exception NoEdgeBetweenNodes

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

retworkx.DAGHasCycle

	
exception DAGHasCycle

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

retworkx.NoSuitableNeighbors

	
exception NoSuitableNeighbors

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

retworkx.NoPathFound

	
exception NoPathFound

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

retworkx.NullGraph

	
exception NullGraph

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

retworkx.BFSSuccessors

	
class BFSSuccessors

	A custom class for the return from retworkx.bfs_successors()

This class is a container class for the results of the
retworkx.bfs_successors() function. It implements the Python
sequence protocol. So you can treat the return as read-only
sequence/list that is integer indexed. If you want to use it as an
iterator you can by wrapping it in an iter() that will yield the
results in order.

For example:

import retworkx

graph = retworkx.generators.directed_path_graph(5)
bfs_succ = retworkx.bfs_successors(0)
Index based access
third_element = bfs_succ[2]
Use as iterator
bfs_iter = iter(bfs_succ)
first_element = next(bfs_iter)
second_element = nex(bfs_iter)

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__()

	Initialize self.

retworkx.NodeIndices

	
class NodeIndices

	A custom class for the return of node indices

This class is a container class for the results of functions that
return a list of node indices. It implements the Python sequence
protocol. So you can treat the return as a read-only sequence/list
that is integer indexed. If you want to use it as an iterator you
can by wrapping it in an iter() that will yield the results in
order.

For example:

import retworkx

graph = retworkx.generators.directed_path_graph(5)
nodes = retworkx.node_indexes(0)
Index based access
third_element = nodes[2]
Use as iterator
nodes_iter = iter(node)
first_element = next(nodes_iter)
second_element = next(nodes_iter)

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__()

	Initialize self.

retworkx.EdgeList

	
class EdgeList

	A custom class for the return of edge lists

This class is a container class for the results of functions that
return a list of edges. It implements the Python sequence
protocol. So you can treat the return as a read-only sequence/list
that is integer indexed. If you want to use it as an iterator you
can by wrapping it in an iter() that will yield the results in
order.

For example:

import retworkx

graph = retworkx.generators.directed_path_graph(5)
edges = graph.edge_list()
Index based access
third_element = edges[2]
Use as iterator
edges_iter = iter(edges)
first_element = next(edges_iter)
second_element = next(edges_iter)

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__()

	Initialize self.

retworkx.WeightedEdgeList

	
class WeightedEdgeList

	A custom class for the return of edge lists with weights

This class is a container class for the results of functions that
return a list of edges with weights. It implements the Python sequence
protocol. So you can treat the return as a read-only sequence/list
that is integer indexed. If you want to use it as an iterator you
can by wrapping it in an iter() that will yield the results in
order.

For example:

import retworkx

graph = retworkx.generators.directed_path_graph(5)
edges = graph.weighted_edge_list()
Index based access
third_element = edges[2]
Use as iterator
edges_iter = iter(edges)
first_element = next(edges_iter)
second_element = next(edges_iter)

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__()

	Initialize self.

Release Notes

0.8.0

Prelude

This release includes several new features and bug fixes. The main features for this release are some usability improvements including the introduction of new methods for interacting with edges, constructing graphs from adjacency matrices, and Universal Functions that are not strictly typed and will work with either a PyGraph or PyDiGraph object. It also includes new algorithm functions around matchings for a PyGraph, including a function to find the maximum weight matching.
This is also the first release to include support and publishing of precompiled binaries for Apple Arm CPUs on MacOS.

New Features

	A new constructor method from_adjacency_matrix()
has been added to the PyDiGraph and
PyGraph (from_adjacency_matrix())
classes. It enables creating a new graph from an input adjacency_matrix.
For example:

import os
import tempfile

import numpy as np
import pydot
from PIL import Image

import retworkx

Adjacency matrix for directed outward star graph:
adjacency_matrix = np.array([
 [0., 1., 1., 1., 1.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]])
Create a graph from the adjacency_matrix:
graph = retworkx.PyDiGraph.from_adjacency_matrix(adjacency_matrix)
Draw graph
dot_str = graph.to_dot(
 lambda node: dict(
 color='black', fillcolor='lightblue', style='filled'))
dot = pydot.graph_from_dot_data(dot_str)[0]
with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: _images/release_notes_0_0.png]

	A new algorithm function, is_matching(), was added to
check if a matching set is valid for given PyGraph
object.

	A new algorithm function, is_maxmimal_matching(), was added
to check if a matching set is valid and maximal for a given
PyGraph object.

	Add a new function, max_weight_matching() for computing the
maximum-weighted matching for a PyGraph object.

	The PyGraph and PyDiGraph
constructors now have a new kwarg multigraph which can optionally be
set to False to disallow adding parallel edges to the graph. With
multigraph=False if an edge is attempted to be added where one already
exists it will update the weight for the edge with the new value. For
example:

import os
import tempfile

import pydot
from PIL import Image

import retworkx as rx

graph = rx.PyGraph(multigraph=False)
graph.extend_from_weighted_edge_list([(0, 1, -1), (1, 2, 0), (2, 0, 1)])
dot = pydot.graph_from_dot_data(
 graph.to_dot(edge_attr=lambda e:{'label': str(e)}))[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: _images/release_notes_1_0.png]

Then trying to add an edge between 0 and 1 again will update its
weight/payload.

graph.add_edge(0, 1, 42)
dot = pydot.graph_from_dot_data(
 graph.to_dot(edge_attr=lambda e:{'label': str(e)}))[0]

with tempfile.TemporaryDirectory() as tmpdirname:
 tmp_path = os.path.join(tmpdirname, 'dag.png')
 dot.write_png(tmp_path)
 image = Image.open(tmp_path)
 os.remove(tmp_path)
image

[image: _images/release_notes_2_0.png]

You can query whether a PyGraph allows multigraphs with the boolean
attribute multigraph. The attribute can not
be set outside of the constructor.

	The retworkx.generators module’s functions
cycle_graph(),
path_graph(),
star_graph(),
mesh_graph(), and
grid_graph() now have a new kwarg multigraph
which takes a boolean and defaults to True. When it is set to False
the generated PyGraph object will have the
multigraph attribute set to False meaning it
will disallow adding parallel edges.

	New Universal Functions that can take in a PyGraph
or PyDiGraph instead of being class specific have been
to the retworkx API. These new functions are:

	retworkx.distance_matrix()

	retworkx.floyd_warshall_numpy()

	retworkx.adjacency_matrix()

	retworkx.all_simple_paths()

	retworkx.astar_shortest_path()

	retworkx.dijkstra_shortest_paths()

	retworkx.dijkstra_shortest_path_lengths()

	retworkx.k_shortest_path_lengths()

	retworkx.dfs_edges()

	Starting with this release wheels will be published for macOS arm64. Only
Python 3.9 is supported at first, because it is the only version of
Python with native support for arm64 macOS.

	The custom return types BFSSuccessors,
NodeIndices, EdgeList, and
WeightedEdgeList now implement __str__ so that
running str() (for example when calling print() on the object) it
will return a human readable string with the contents of the custom return
type.

	The custom return types BFSSuccessors,
NodeIndices, EdgeList, and
WeightedEdgeList now implement __hash__ so that
running hash() (for example when insert them into a dict) will
return a valid hash for the object. The only exception to this is for
BFSSuccessors and WeightedEdgeList
if they contain a Python object that is not hashable, in those cases
calling hash() will raise a TypeError, just like as you called
hash() on the inner unhashable object.

	Two new methods, update_edge() and
update_edge_by_index() were added to the
retworkx.PyDiGraph and retworkx.PyGraph (
update_edge() and
update_edge_by_index()) classes. These methods
are used to update the data payload/weight of an edge in the graph either
by the nodes of an edge or by edge index.

Bug Fixes

	In previous releases the Python garbage collector did not know how to
interact with PyDiGraph or PyGraph
objects and as a result they may never have been freed until Python exited.
To fix this issue, the PyDiGraph and
PyGraph classes now are integrated with Python’s garbage
collector so they’ll properly be cleared when there are no more references
to a graph object.

	The output from retworkx.PyDiGraph.neighbors()
and retworkx.PyGraph.neighbors() methods will no longer
include duplicate entries in case of parallel edges between nodes. See
#250 [https://github.com/Qiskit/retworkx/issues/250] for more details.

	In previous releases the Python garbage collector did not know how to
interact with the custom return types BFSSuccessors,
NodeIndices, EdgeList, and
WeightedEdgeList and as a result they may never have
been freed until Python exited. To fix this issue the custom return type
classes now are integrated with Python’s garbage collector so they’ll
properly be cleared when there are no more Python references to an object.

0.7.2

Bug Fixes

	Fixed a potential segfault that could occur when calling
is_directed_acyclic_graph() with a a very deep
PyDiGraph object as reported in
Qiskit/qiskit-terra#5502 [https://github.com/Qiskit/qiskit-terra/issues/5502].

0.7.1

This release includes a fix for an oversight in the previous 0.7.0 and
0.6.0 releases. Those releases both added custom return types
BFSSuccessors, NodeIndices,
EdgeList, and WeightedEdgeList that
implemented the Python sequence protocol which were used in place of
lists for certain functions and methods. However, none of those classes
had support for being pickled, which was causing compatibility issues
for users that were using the return in a context where it would be
pickled (for example as an argument to or return of a function called
with multiprocessing). This release has a single change over 0.7.0 which
is to add the missing support for pickling BFSSuccessors,
NodeIndices, EdgeList, and
WeightedEdgeList which fixes that issue.

0.7.0

This release includes several new features and bug fixes.

This release also dropped support for Python 3.5. If you want to use
retworkx with Python 3.5 that last version which supports Python 3.5
is 0.6.0.

New Features

	New generator functions for two new generator types, mesh and grid
were added to retworkx.generators for generating all to all and grid
graphs respectively. These functions are:
mesh_graph(),
directed_mesh_graph(),
grid_graph(), and
directed_grid_graph()

	A new function, retworkx.digraph_union(), for taking the union between
two PyDiGraph objects has been added.

	A new PyDiGraph method
merge_nodes() has been added. This method can be
used to merge 2 nodes in a graph if they have the same weight/data payload.

	A new PyDiGraph method
find_node_by_weight() which can be used to lookup
a node index by a given weight/data payload.

	A new return type NodeIndices has been added. This class
is returned by functions and methods that return a list of node indices. It
implements the Python sequence protocol and can be used as list.

	Two new return types EdgeList and
WeightedEdgeList. These classes are returned from functions
and methods that return a list of edge tuples and a list of edge tuples with
weights. They both implement the Python sequence protocol and can be used as
a list

	A new function collect_runs() has been added. This function is
used to find linear paths of nodes that match a given condition.

Upgrade Notes

	Support for running retworkx on Python 3.5 has been dropped. The last
release with support for Python 3.5 is 0.6.0.

	The retworkx.PyDiGraph.node_indexes(),
retworkx.PyDiGraph.neighbors(),
retworkx.PyDiGraph.successor_indices(),
retworkx.PyDiGraph.predecessor_indices(),
retworkx.PyDiGraph.add_nodes_from(),
retworkx.PyGraph.node_indexes(),
retworkx.PyGraph.add_nodes_from(), and
retworkx.PyGraph.neighbors() methods and the
dag_longest_path(), topological_sort(),
graph_astar_shortest_path(), and
digraph_astar_shortest_path() functions now return a
NodeIndices object instead of a list of integers. This
should not require any changes unless explicit type checking for a list was
used.

	The retworkx.PyDiGraph.edge_list(), and
retworkx.PyGraph.edge_list() methods and
digraph_dfs_edges(), graph_dfs_edges(),
and digraph_find_cycle() functions now return an
EdgeList object instead of a list of integers. This should
not require any changes unless explicit type checking for a list was used.

	The retworkx.PyDiGraph.weighted_edge_list(),
retworkx.PyDiGraph.in_edges(), retworkx.PyDiGraph.out_edges(),
and retworkx.PyGraph.weighted_edge_list methods now return a
WeightedEdgeList object instead of a list of integers.
This should not require any changes unless explicit type checking for a list
was used.

Fixes

	BFSSuccessors objects now can be compared with == and
!= to any other Python sequence type.

	The built and published sdist packages for retworkx were previously
not including the Cargo.lock file. This meant that the reproducible
build versions of the rust dependencies were not passed through to
source. This has been fixed so building from sdist will always use
known working versions that we use for testing in CI.

0.6.0

This release includes a number of new features and bug fixes. The main focus of
this release was to expand the retworkx API functionality to include some
commonly needed functions that were missing.

This release is also the first release to provide full support for running with
Python 3.9. On previous releases Python 3.9 would likely work, but it would
require building retworkx from source. Also this will likely be the final
release that supports Python 3.5.

New Features

	Two new functions, digraph_k_shortest_path_lengths() and
graph_k_shortest_path_lengths(), for finding the k shortest
path lengths from a node in a PyDiGraph and
PyGraph.

	A new method, is_symmetric(), to the
PyDiGraph class. This method will check whether the graph
is symmetric or not

	A new kwarg, as_undirected, was added to the
digraph_floyd_warshall_numpy() function. This can be used
to treat the input PyDiGraph object as if it was
undirected for the generated output matrix.

	A new function, digraph_find_cycle(), which will return the
first cycle during a depth first search of a PyDiGraph
object.

	Two new functions, directed_gnm_random_graph() and
undirected_gnm_random_graph(), for generating random
\(G(n, m)\) graphs.

	A new method, remove_edges_from(), was added to
PyDiGraph and PyGraph
(removed_edges_from()). This can be used to remove
multiple edges from a graph object in a single call.

	A new method, subgraph(), was added to
PyDiGraph and PyGraph
(subgraph()) which takes in a list of node indices
and will return a new object of the same type representing a subgraph
containing the node indices in that list.

	Support for running with Python 3.9

	A new method, to_undirected(), was added to
PyDiGraph. This method will generate an undirected
PyGraph object from the PyDiGraph
object.

	A new kwarg, bidirectional, was added to the directed generator functions
directed_cycle_graph(),
directed_path_graph(), and
directed_star_graph(). When set to True the
directed graphs generated by these functions will add edges in both directions.

	Added two new functions, is_weakly_connected() and
weakly_connected_components(), which will either check if a
PyDiGraph object is weakly connected or return the list of
the weakly connected components of an input PyDiGraph.

	The weight_fn kwarg for graph_adjacency_matrix(),
digraph_adjacency_matrix(),
graph_floyd_warshall_numpy(), and
digraph_floyd_warshall_numpy() is now optional. Previously,
it always had to be specified when calling these function. But, instead you
can now rely on a default weight float (which defaults to 1.0) to be used
for all the edges in the graph.

	Add a neighbors() method to
PyGraph and PyDiGraph
(neighbors()). This function will return the node
indices of the neighbor nodes for a given input node.

	Two new methods, successor_indices() and
predecessor_indices(), were added to
PyDiGraph. These methods will return the node indices for
the successor and predecessor nodes of a given input node.

	Two new functions, graph_distance_matrix() and
digraph_distance_matrix(), were added for generating a
distance matrix from an input PyGraph and
PyDiGraph.

	Two new functions, digraph_dijkstra_shortest_paths() and
graph_dijkstra_shortest_path(), were added for returning the
shortest paths from a node in a PyDiGraph and a
PyGraph object.

	Four new methods, insert_node_on_in_edges(),
insert_node_on_out_edges(),
insert_node_on_in_edges_multiple(), and
insert_node_on_out_edges_multiple() were added to
PyDiGraph. These functions are used to insert an existing
node in between an reference node(s) and all it’s predecessors or successors.

	Two new functions, graph_dfs_edges() and
digraph_dfs_edges(), were added to get an edge list in depth
first order from a PyGraph and
PyDiGraph.

Upgrade Notes

	The numpy arrays returned by graph_floyd_warshall_numpy(),
digraph_floyd_warshall_numpy(),
digraph_adjacency_matrix(), and
graph_adjacency_matrix() will now be in a contiguous C array
memory layout. Previously, they would return arrays in a column-major fortran
layout. This was change was made to make it easier to interface the arrays
returned by these functions with other C Python extensions. There should be
no change when interacting with the numpy arrays via numpy’s API.

	The bfs_successors() method now returns an object of a custom
type BFSSuccessors instead of a list. The
BFSSuccessors type implements the Python sequence protocol
so it can be used in place like a list (except for where explicit type checking
is used). This was done to defer the type conversion between Rust and Python
since doing it all at once can be a performance bottleneck especially for
large graphs. The BFSSuccessors class will only do the type
conversion when an element is accessed.

Fixes

	When pickling PyDiGraph objects the original node indices
will be preserved across the pickle.

	The random \(G(n, p)\) functions,
directed_gnp_random_graph() and
undirected_gnp_random_graph(), will now also handle exact 0 or
1 probabilities. Previously it would fail in these cases. Fixes
#172 [https://github.com/Qiskit/retworkx/issues/172]

0.5.0

This release include a number of new features and bug fixes. The main
focus of the improvements of this release was to increase the ease of
interacting with graph objects. This includes adding support for generating dot
output which can be used with graphviz (or similar tools) for visualizing
graphs adding more methods to query the state of graph, adding a generator
module for easily creating graphs of certain shape, and implementing the
mapping protocol so you can directly interact with graph objects.

New Features

	A new method, to_dot(), was added to
PyGraph and PyDiGraph
(to_dot()). It will generate a
dot format [https://graphviz.org/doc/info/lang.html] representation of
the object which can be used with Graphivz [https://graphviz.org/] (or
similar tooling) to generate visualizations of graphs.

	Added a new function, strongly_connected_components(), to get
the list of strongly connected components of a PyDiGraph
object.

	A new method, compose(), for composing another graph
object of the same type into a graph was added to PyGraph
and PyDiGraph (compose()).

	The PyGraph and PyDigraph classes now
implement the Python mapping protocol for interacting with graph nodes. You
can now access and interact with node data directly by using standard map
access patterns in Python. For example, accessing a graph like graph[1]
will return the weight/data payload for the node at index 1.

	A new module, retworkx.generators, has been added. Functions in this
module can be used for quickly generating graphs of certain shape. To start
it includes:

	retworkx.generators.cycle_graph()

	retworkx.generators.directed_cycle_graph()

	retworkx.generators.path_graph()

	retworkx.generators.directed_path_graph()

	retworkx.generators.star_graph()

	retworkx.generators.directed_star_graph()

	A new method, remove_node_retain_edges(), has been
added to the PyDiGraph class. This method can be used to
remove a node and add edges from its predecesors to its successors.

	Two new methods, edge_list() and
weighted_edge_list(), for getting a list of tuples
with the edge source and target (with or without edge weights) have been
added to PyGraph and PyDiGraph
(edge_list() and
weighted_edge_list())

	A new function, cycle_basis(), for getting a list of cycles
which form a basis for cycles of a PyGraph object.

	Two new functions, graph_floyd_warshall_numpy() and
digraph_floyd_warshall_numpy(), were added for running the
Floyd Warshall algorithm and returning all the shortest path lengths as a
distance matrix.

	A new constructor method, read_edge_list(), has been
added to PyGraph and PyDigraph
(read_edge_list()). This method will take in a path to an
edge list file and will read that file and generate a new object from the
contents.

	Two new methods, extend_from_edge_list() and
extend_from_weighted_edge_list() has been added
to PyGraph and PyDiGraph
(extend_from_edge_list() and
extend_from_weighted_edge_list()). This method
takes in an edge list and will add both the edges and nodes (if a node index
used doesn’t exist yet) in the list to the graph.

Fixes

	The limitation with the is_isomorphic() and
is_isomorphic_node_match() functions that would cause
segfaults when comparing graphs with node removals has been fixed. You can
now run either function with any
PyDiGraph/PyDAG objects, even if there
are node removals. Fixes
#27 [https://github.com/Qiskit/retworkx/issues/27]

	If an invalid node index was passed as part of the first_layer
argument to the layers() function it would previously raise
a PanicException that included a Rust backtrace and no other user
actionable details which was caused by an unhandled error. This has been
fixed so that an IndexError is raised and the problematic node index
is included in the exception message.

0.4.0

This release includes many new features and fixes, including improved
performance and better documentation. But, the biggest change for this
release is that this is the first release of retworkx that supports
compilation with a stable released version of rust. This was made
possible thanks to all the hard work of the PyO3 maintainers and
contributors in the PyO3 0.11.0 release.

New Features

	A new class for undirected graphs, PyGraph, was added.

	2 new functions graph_adjacency_matrix() and
digraph_adjacency_matrix() to get the adjacency matrix of a
PyGraph and PyDiGraph object.

	A new PyDiGraph method,
find_adjacent_node_by_edge(), was added. This is
used to locate an adjacent node given a condition based on the edge between them.

	New methods, add_nodes_from(),
add_edges_from(),
add_edges_from_no_data(), and
remove_nodes_from() were added to
PyDiGraph. These methods allow for the addition (and
removal) of multiple nodes or edges from a graph in a single call.

	A new function, graph_greedy_color(), which is used to
return a coloring map from a PyGraph object.

	2 new functions, graph_astar_shortest_path() and
digraph_astar_shortest_path(), to find the shortest path
from a node to a specified goal using the A* search algorithm.

	2 new functions, graph_all_simple_paths() and
digraph_all_simple_paths(), to return a list of all the
simple paths between 2 nodes in a PyGraph or a
PyDiGraph object.

	2 new functions, directed_gnp_random_graph() and
undirected_gnp_random_graph(), to generate \(G_{np}\)
random PyDiGraph and PyGraph objects.

	2 new functions, graph_dijkstra_shortest_path_lengths() and
digraph_dijkstra_shortest_path_lengths(), were added for find
the shortest path length between nodes in PyGraph or
PyDiGraph object using Dijkstra’s algorithm.

Upgrade Notes

	The PyDAG class was renamed PyDiGraph
to better reflect it’s functionality. For backwards compatibility
PyDAG still exists as a Python subclass of
PyDiGraph. No changes should be required for existing
users.

	numpy [https://numpy.org/] is now a dependency of retworkx. This is used
for the adjacency matrix functions to return numpy arrays. The minimum
version of numpy supported is 1.16.0.

Fixes

	The retworkx exception classes are now properly exported from the
retworkx module. In prior releases it was not possible to import the
exception classes (normally to catch one being raised) requiring users
to catch the base Exception class. This has been fixed so a
specialized retworkx exception class can be used.

Contributing

First read the overall Qiskit project contribution guidelines. These are all
included in the Qiskit documentation:

https://qiskit.org/documentation/contributing_to_qiskit.html

While it’s not all directly applicable since most of it is about the Qiskit
project itself and retworkx is an independent library developed in tandem
with Qiskit; the general guidelines and advice still apply here.

Contributing to retworkx

In addition to the general guidelines there are specific details for
contributing to retworkx, these are documented below.

Tests

Once you’ve made a code change, it is important to verify that your change
does not break any existing tests and that any new tests that you’ve added
also run successfully. Before you open a new pull request for your change,
you’ll want to run the test suite locally.

The easiest way to run the test suite is to use
tox [https://tox.readthedocs.io/en/latest/#]. You can install tox
with pip: pip install -U tox. Tox provides several advantages, but the
biggest one is that it builds an isolated virtualenv for running tests. This
means it does not pollute your system python when running.

Note, if you run tests outside of tox that you can not run the tests from
the root of the repo, this is because retworkx packaging shim will conflict
with imports from retworkx the installed version of retworkx (which contains
the compiled extension).

Style

Rust

Rust is the primary language of retworkx and all the functional code in the
libraries is written in Rust. The Rust code in retworkx uses
rustfmt [https://github.com/rust-lang/rustfmt] to enforce consistent style.
CI jobs are configured to ensure to check this. Luckily adapting your code is
as simple as running:

cargo fmt

locally. This will automatically restyle the rust code in retworkx to match
what CI is checking.

Lint

An additional step is to run clippy [https://github.com/rust-lang/rust-clippy]
on your changes. While this is not run in CI (because it’s very dependent on
the rust/cargo version) it can often catch issues in your code. You can run it
by running:

cargo clippy

Python

Python is used primarily for tests and some small pieces of packaging
and namespace configuration code in the actual library.
flake8 [https://flake8.pycqa.org/en/latest/] is used to enforce consistent
style in the python code in the repository. You can run it via tox using:

tox -elint

This will also run cargo fmt in check mode to ensure that you ran cargo fmt
and will fail if the Rust code doesn’t conform to the style rules.

Building documentation

Just like with tests building documentation is done via tox. This will handle
compiling retworkx, installing the python dependencies, and then building the
documentation in an isolated venv. You can run just the docs build with:

tox -edocs

which will output the html rendered documentation in docs/build/html which
you can view locally in a web browser.

Release Notes

It is important to document any end user facing changes when we release a new
version of retworkx. The expectation is that if your code contribution has
user facing changes that you will write the release documentation for these
changes. This documentation must explain what was changed, why it was changed,
and how users can either use or adapt to the change. The idea behind release
documentation is that when a naive user with limited internal knowledge of the
project is upgrading from the previous release to the new one, they should be
able to read the release notes, understand if they need to update their
program which uses retworkx, and how they would go about doing that. It
ideally should explain why they need to make this change too, to provide the
necessary context.

To make sure we don’t forget a release note or if the details of user facing
changes over a release cycle we require that all user facing changes include
documentation at the same time as the code. To accomplish this we use the
reno [https://docs.openstack.org/reno/latest/] tool which enables a git based
workflow for writing and compiling release notes.

Adding a new release note

Making a new release note is quite straightforward. Ensure that you have reno
installed with:

pip install -U reno

Once you have reno installed you can make a new release note by running in
your local repository checkout’s root:

reno new short-description-string

where short-description-string is a brief string (with no spaces) that describes
what’s in the release note. This will become the prefix for the release note
file. Once that is run it will create a new yaml file in releasenotes/notes.
Then open that yaml file in a text editor and write the release note. The basic
structure of a release note is restructured text in yaml lists under category
keys. You add individual items under each category and they will be grouped
automatically by release when the release notes are compiled. A single file
can have as many entries in it as needed, but to avoid potential conflicts
you’ll want to create a new file for each pull request that has user facing
changes. When you open the newly created file it will be a full template of
the different categories with a description of a category as a single entry
in each category. You’ll want to delete all the sections you aren’t using and
update the contents for those you are. For example, the end result should
look something like:

features:
 - |
 Added a new function, :func:`~retworkx.foo` that adds support for doing
 something to :class:`~retworkx.PyDiGraph` objects.
 - |
 The :class:`~retworkx.PyDiGraph` class has a new method
 :meth:`~retworkx.PyDiGraph.foo``. This is the equivalent of calling the
 :func:`~retworkx.foo` function to do something to your
 :class:`~retworkx.PyDiGraph` object, but provides the convenience of running
 it natively on an object. For example::

 from retworkx import PyDiGraph

 g = PyDiGraph.
 g.foo()

deprecations:
 - |
 The ``retworkx.bar`` function has been deprecated and will be removed in a
 future release. It has been superseded by the
 :meth:`~retworkx.PyDiGraph.foo` method and :func:`~retworkx.foo` function
 which provides similar functionality but with more accurate results and
 better performance. You should update your calls
 ``retworkx.bar()`` calls to use ``retworkx.foo()`` instead.

You can also look at other release notes for other examples.

You can use any
sphinx feature [https://www.sphinx-doc.org/en/3.x/usage/restructuredtext/]
in them (code sections, tables, enumerated lists, bulleted list, etc) to express
what is being changed as needed. In general you want the release notes to
include as much detail as needed so that users will understand what has changed,
why it changed, and how they’ll have to update their code.

After you’ve finished writing your release notes you’ll want to add the note
file to your commit with git add and commit them to your PR branch to make
sure they’re included with the code in your PR.

Linking to issues

If you need to link to an issue or other Github artifact as part of the release
note this should be done using an inline link with the text being the issue
number. For example you would write a release note with a link to issue 12345
as:

fixes:
 - |
 Fixes a race condition in the function ``foo()``. Refer to
 `#12345 <https://github.com/Qiskit/retworkx/issues/12345>`__ for more
 details.

Generating the release notes

After release notes have been added if you want to see what the full output of
the release notes. Reno is used to combine the release note yaml files into a
single rst (ReStructuredText) document that
sphinx [https://www.sphinx-doc.org/en/master/] will then compile for us as part
of the documentation builds. If you want to generate the rst file you
use the reno report command. If you want to generate the full retworkx
release notes for all releases (since we started using reno during 0.8) you just
run:

reno report

but you can also use the --version argument to view a single release (after
it has been tagged:

reno report --version 0.8.0

Building release notes locally

Building the release notes is part of the standard retworkx documentation
builds. To check what the rendered html output of the release notes will look
like for the current state of the repo you can run: tox -edocs which will
build all the documentation into docs/_build/html and the release notes in
particular will be located at docs/_build/html/release_notes.html

retworkx for networkx users

This is an introductory guide for existing networkx users on how to use
retworkx, how it differs from networkx, and key differences to keep in mind.

Some Key Differences

retworkx (as the name implies) was inspired by networkx and the goal of the
project is to provide a similar level of functionality and utility to what
networkx offers but with much faster performance. However, because of
limitations in the boundary between rust and python, different design
decisions, and other differences the libraries are not identical.

The biggest difference to keep in mind is networkx is a very dynamic in how it
can be used. It allows you to treat a graph object associatively (like a python
dictionary) and interact with the graph using the objects you’re putting
on the graph. For example:

import networkx as nx

graph = nx.MultiDiGraph()
graph.add_node('my_node_a')
graph.add_node('my_node_b')
graph.add_edge('my_node_a', 'my_node_b')

While retworkx being written in Rust puts more constraints on how
you interact with graph objects. With retworkx you can still attach any Python
object on the a graph but each node and edge is assigned an integer index.
That index must be used for accessing nodes and edges on the graph.
In retworkx the above example would be something like:

import retworkx as rx

graph = rx.PyDiGraph()
node_a = graph.add_node('my_node_a')
node_b = graph.add_node('my_node_b')
graph.add_edge(node_a, node_b, None)

where node_a == 0 and node_b == 1. These node indices can be used with a
graph object to access the objects set as the payload object via the python
mapping protocol (not the sequence protocol because the indices are not
guaranteed to be a sequence after nodes or edges are removed from a graph). Continuing
from the above retworkx example:

assert 'my_node_a' == graph[node_a]
assert 'my_node_b' == graph[node_b]

The use of integer indexes for everything is normally the biggest difference that
existing networkx users have to adapt to when migrating to retworkx.

Similarly when there are algorithm functions that operate on a node or edge
data, callback functions are used in retworkx to return statically typed data
from node or edge payloads to use for various algorithms. In networkx this is
typically done using named attributes of nodes or edges (the typical example of
a node or edge attribute named weight is used by default for functions that
need a numerical weight).

For example, in networkx:

import networkx as nx

graph = nx.MultiDiGraph()
graph.add_edges_from([(0, 1, {'weight': 1}), (0, 2, {'weight': 2}),
 (1, 3, {'weight': 2}), (3, 0, {'weight': 3})])
dist_matrix = nx.floyd_warshall_numpy(graph, weight='weight')

while in retworkx you would use:

import retworkx as rx

graph = rx.PyDiGraph()
graph.extend_from weighted_edge_list(
 [(0, 1, {'weight': 1}), (0, 2, {'weight': 2}),
 (1, 3, {'weight': 2}), (3, 0, {'weight': 3})])
dist_matrix = rx.digraph_floyd_warshall_numpy(
 graph, weight_fn=lambda edge: edge[weight])

or more concisely:

import retworkx as rx

graph = rx.PyDiGraph()
graph.extend_from weighted_edge_list(
 [(0, 1, 1), (0, 2, 2),
 (1, 3, 2), (3, 0, 3)])
dist_matrix = rx.digraph_floyd_warshall_numpy(graph,
 weight_fn=lambda edge: edge)

The other large difference to keep in mind is that most functions in retworkx
are explicitly typed. This means that they either always return or accept
either a PyDiGraph or a PyGraph but not
both. The exception to this are the Universal Functions which will
dispatch to the statically typed equivalent based on the object they receive.
This is different from networkx where everything is pretty much dynamically
typed and you can pass a graph object to any function and it will work as
expected (unless it isn’t supported and then it will raise an exception).

Graph Data and Attributes

Nodes

In networkx a node can be any hashable python object. That object is then used
to access or refer to a node. Additionally, you can set optional attributes
on a node. This is described in more detail below.

In retworkx any python object (hashable or not) can be used as a node, however
nodes can only be accessed by an integer node index (which is returned by any
function adding a node). There are no optional attributes for nodes. If this
is required that is expected to be added to the node’s data payload.

Edges

Edges in networkx are accessible by the tuple of the nodes the edge is between.
Edges only have optional attributes (as described below) and no other object
payload.

In retworkx any python object can be an edge and have a unique integer index
assigned to it, just like nodes. However, edges are in most functions/methods
referenced by the tuple of the indices of the nodes the edge is between
instead of the edge’s index.

Attributes

networkx has a concept of
graph [https://networkx.org/documentation/stable/tutorial.html#graph-attributes],
node [https://networkx.org/documentation/stable/tutorial.html#node-attributes],
and edge attributes [https://networkx.org/documentation/stable/tutorial.html#edge-attributes]
in addition to the hashable object used for a node’s payload. Retworkx
has no analogous concept. Instead, the payloads for nodes and edges are any
python object (hashable or not). This enables you to build similar structures
to the attributes concept, but also use alternative structures specific to
your use case.

For example, something like:

import networkx as nx

graph = nx.Graph()
graph.add_node(1, time='5pm')
graph.add_nodes_from([3], time='2pm')
graph.nodes[1]['room'] = 714

can be accomplished by using a dict for node weights:

import retworkx as rx

graph = rx.PyGraph()
node_a = graph.add_node({'time': '5pm'})
node_b = graph.add_nodes_from([{'time': '2pm'}])
graph[node_a]['room'] = 714

Examining elements of a graph

networkx provides 4 attributes on graph objects nodes, edges, adj,
and degree which act as set like views for the nodes, edges, neighbors, and
degrees of nodes respectively. These properties provide a real time view into
the different properties of the graphs and provide additional methods on those
attributes for looking at graph properties in different ways.

retworkx doesn’t offer views, but instead provides different accessor methods
that return copies of the analogous data. There are different functions/methods
that offer different views on that data. For example,
edge_list() is analogous to networkx’s edges view
and weighted_edge_list() is equivalent to networkx’s
edges(data=True).

Additionally, since everything in retworkx is integer indexed, to access node
data the PyDiGraph and PyGraph classes
implement the python mapping protocol so you can access node’s data using a
node’s index.

API Equivalents

Class Constructors

	networkx

	retworkx

	Notes

	Graph()

	PyGraph(multigraph=False)

	Only in multigraph flag added in retworkx>= 0.8.0 prior releases
always allow multiple edges

	DiGraph()

	PyDiGraph(multigraph=False)

	Only in multigraph flag added in retworkx>= 0.8.0 prior releases
always allow multiple edges

	MultiGraph()

	PyGraph()

	

	MultiDiGraph()

	PyDiGraph()

	

The other thing to note here is that retworkx does not allow initialization
of a graph when the constructor is called. You will need to call an appropriate
method of the object to add nodes or edges or use an alternative constructor
method:

	networkx

	retworkx

	Notes

	Graph([(0, 1), (1, 0)])

	graph = PyGraph()
graph.extend_from_edge_list([(0, 1), (1, 0)])

	retworkx input must be a list of 2-tuples, while networkx can be an
iterator

	Graph([(0, 1, {'weight': 2}), (1, 0, {'weight': 1})])

	graph = PyGraph()
graph.extend_from_edge_list([(0, 1, 2), (1, 0, 1)])

	retworkx input must be a list of 3-tuples, while networkx can be an
iterator

	Graph(np.array([[0, 1, 1], [1, 0, 1], [1, 0, 1]]))

	PyGraph.from_adjacency_matrix(np.array([[0, 1, 1], [1, 0, 1], [1, 0, 1]], dtype=np.float64))

	retworkx from_adjacency_matrix() can only take
a float dtype numpy array, you can use
.astype(np.float64, copy=False) to adapt a non-float array.

Graph Modifiers

	networkx

	retworkx

	Notes

	add_node()

	add_node()

	retworkx returns a node index for the newly created node

	add_nodes_from

	add_nodes_from()

	retworkx requires the input to be a list of objects and will return a
list of node indices for the newly created nodes

	add_edge

	add_edge()

	retworkx requires 3 parameters be used, the 2 node indices and the payload
(networkx works with either 2 or 3)

	add_edges_from

	add_edges_from(),
add_edges_from_no_data(),
extend_from_edge_list(),
extend_from_weighted_edge_list()

	retworkx requires a list of either a 3 or 2 tuple (depending on whether
weights/data are expected or not). The difference between the retworkx
extend_from* and add_edges_from* methods are that the
extend_from* will create new nodes with a weight/data payload of
None if any node indices are missing.

(note the retworkx version links to the PyDiGraph version,
but there are also equivalent PyGraph methods available)

Functionality Gaps

networkx is a mature library that has a wide user base and extensive feature set,
while retworkx, by comparison, is a much younger library and is missing a lot
of the features that networkx offers. If you encounter a feature that networkx
offers which is missing from retworkx that you would like to use please open an
“Enhancement request” issue at: https://github.com/Qiskit/retworkx/issues/new/choose
Once an issue is opened we can prioritize working on adding an equivalent
feature to retworkx.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (BFSSuccessors method)

 	(EdgeList method)

 	(NodeIndices method)

 	(PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	(WeightedEdgeList method)

A

 	
 	add_child() (PyDAG method)

 	(PyDiGraph method)

 	add_edge() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	add_edges_from() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	add_edges_from_no_data() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	add_node() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	
 	add_nodes_from() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	add_parent() (PyDAG method)

 	(PyDiGraph method)

 	adj() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	adj_direction() (PyDAG method)

 	(PyDiGraph method)

 	adjacency_matrix() (in module retworkx)

 	all_simple_paths() (in module retworkx)

 	ancestors() (in module retworkx)

 	astar_shortest_path() (in module retworkx)

B

 	
 	bfs_successors() (in module retworkx)

 	
 	BFSSuccessors (class in retworkx)

C

 	
 	check_cycle (PyDAG attribute)

 	(PyDiGraph attribute)

 	collect_runs() (in module retworkx)

 	compose() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	
 	cycle_basis() (in module retworkx)

 	cycle_graph() (in module retworkx.generators)

D

 	
 	dag_longest_path() (in module retworkx)

 	dag_longest_path_length() (in module retworkx)

 	DAGHasCycle

 	DAGWouldCycle

 	degree() (PyGraph method)

 	descendants() (in module retworkx)

 	dfs_edges() (in module retworkx)

 	digraph_adjacency_matrix() (in module retworkx)

 	digraph_all_simple_paths() (in module retworkx)

 	digraph_astar_shortest_path() (in module retworkx)

 	digraph_dfs_edges() (in module retworkx)

 	digraph_dijkstra_shortest_path_lengths() (in module retworkx)

 	digraph_dijkstra_shortest_paths() (in module retworkx)

 	digraph_distance_matrix() (in module retworkx)

 	
 	digraph_find_cycle() (in module retworkx)

 	digraph_floyd_warshall_numpy() (in module retworkx)

 	digraph_k_shortest_path_lengths() (in module retworkx)

 	digraph_union() (in module retworkx)

 	dijkstra_shortest_path_lengths() (in module retworkx)

 	dijkstra_shortest_paths() (in module retworkx)

 	directed_cycle_graph() (in module retworkx.generators)

 	directed_gnm_random_graph() (in module retworkx)

 	directed_gnp_random_graph() (in module retworkx)

 	directed_grid_graph() (in module retworkx.generators)

 	directed_mesh_graph() (in module retworkx.generators)

 	directed_path_graph() (in module retworkx.generators)

 	directed_star_graph() (in module retworkx.generators)

 	distance_matrix() (in module retworkx)

E

 	
 	edge_list() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	EdgeList (class in retworkx)

 	edges() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	
 	extend_from_edge_list() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	extend_from_weighted_edge_list() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

F

 	
 	find_adjacent_node_by_edge() (PyDAG method)

 	(PyDiGraph method)

 	find_node_by_weight() (PyDAG method)

 	(PyDiGraph method)

 	
 	floyd_warshall() (in module retworkx)

 	floyd_warshall_numpy() (in module retworkx)

 	from_adjacency_matrix() (PyDAG static method)

 	(PyDiGraph static method)

 	(PyGraph static method)

G

 	
 	get_all_edge_data() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	get_edge_data() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	get_node_data() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	graph_adjacency_matrix() (in module retworkx)

 	
 	graph_all_simple_paths() (in module retworkx)

 	graph_astar_shortest_path() (in module retworkx)

 	graph_dfs_edges() (in module retworkx)

 	graph_dijkstra_shortest_path_lengths() (in module retworkx)

 	graph_dijkstra_shortest_paths() (in module retworkx)

 	graph_distance_matrix() (in module retworkx)

 	graph_floyd_warshall_numpy() (in module retworkx)

 	graph_greedy_color() (in module retworkx)

 	graph_k_shortest_path_lengths() (in module retworkx)

 	grid_graph() (in module retworkx.generators)

H

 	
 	has_edge() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

I

 	
 	in_degree() (PyDAG method)

 	(PyDiGraph method)

 	in_edges() (PyDAG method)

 	(PyDiGraph method)

 	insert_node_on_in_edges() (PyDAG method)

 	(PyDiGraph method)

 	insert_node_on_in_edges_multiple() (PyDAG method)

 	(PyDiGraph method)

 	insert_node_on_out_edges() (PyDAG method)

 	(PyDiGraph method)

 	
 	insert_node_on_out_edges_multiple() (PyDAG method)

 	(PyDiGraph method)

 	InvalidNode

 	is_directed_acyclic_graph() (in module retworkx)

 	is_isomorphic() (in module retworkx)

 	is_isomorphic_node_match() (in module retworkx)

 	is_matching() (in module retworkx)

 	is_maximal_matching() (in module retworkx)

 	is_symmetric() (PyDAG method)

 	(PyDiGraph method)

 	is_weakly_connected() (in module retworkx)

K

 	
 	k_shortest_path_lengths() (in module retworkx)

L

 	
 	layers() (in module retworkx)

 	
 	lexicographical_topological_sort() (in module retworkx)

M

 	
 	max_weight_matching() (in module retworkx)

 	merge_nodes() (PyDAG method)

 	(PyDiGraph method)

 	
 	mesh_graph() (in module retworkx.generators)

 	multigraph (PyDAG attribute)

 	(PyDiGraph attribute)

 	(PyGraph attribute)

N

 	
 	neighbors() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	node_indexes() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	NodeIndices (class in retworkx)

 	
 	nodes() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	NoEdgeBetweenNodes

 	NoPathFound

 	NoSuitableNeighbors

 	NullGraph

 	number_weakly_connected_components() (in module retworkx)

O

 	
 	out_degree() (PyDAG method)

 	(PyDiGraph method)

 	
 	out_edges() (PyDAG method)

 	(PyDiGraph method)

P

 	
 	path_graph() (in module retworkx.generators)

 	predecessor_indices() (PyDAG method)

 	(PyDiGraph method)

 	predecessors() (PyDAG method)

 	(PyDiGraph method)

 	
 	PyDAG (class in retworkx)

 	PyDiGraph (class in retworkx)

 	PyGraph (class in retworkx)

R

 	
 	read_edge_list() (PyDAG static method)

 	(PyDiGraph static method)

 	(PyGraph static method)

 	remove_edge() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	remove_edge_from_index() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	remove_edges_from() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	
 	remove_node() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	remove_node_retain_edges() (PyDAG method)

 	(PyDiGraph method)

 	remove_nodes_from() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

S

 	
 	star_graph() (in module retworkx.generators)

 	strongly_connected_components() (in module retworkx)

 	subgraph() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	
 	successor_indices() (PyDAG method)

 	(PyDiGraph method)

 	successors() (PyDAG method)

 	(PyDiGraph method)

T

 	
 	to_dot() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	
 	to_undirected() (PyDAG method)

 	(PyDiGraph method)

 	topological_sort() (in module retworkx)

U

 	
 	undirected_gnm_random_graph() (in module retworkx)

 	undirected_gnp_random_graph() (in module retworkx)

 	update_edge() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	
 	update_edge_by_index() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

W

 	
 	weakly_connected_components() (in module retworkx)

 	weighted_edge_list() (PyDAG method)

 	(PyDiGraph method)

 	(PyGraph method)

 	WeightedEdgeList (class in retworkx)

 	with_traceback() (DAGHasCycle method)

 	(DAGWouldCycle method)

 	(InvalidNode method)

 	(NoEdgeBetweenNodes method)

 	(NoPathFound method)

 	(NoSuitableNeighbors method)

 	(NullGraph method)

 _images/retworkx.PyDAG_2_0.png

_images/retworkx.PyDAG_3_0.png

_images/release_notes_1_0.png

_images/release_notes_2_0.png

_images/retworkx.PyDAG_6_0.png

_images/retworkx.PyDiGraph_2_0.png

_images/retworkx.PyDAG_4_0.png

_images/retworkx.PyDAG_5_0.png

_images/retworkx.PyDiGraph_3_0.png

_images/retworkx.PyDiGraph_4_0.png

_images/retworkx.PyDiGraph_5_0.png

nav.xhtml

 Table of Contents

 		
 retworkx Documentation

 		
 retworkx

 		
 Installing retworkx

 		
 Installing on a platform without precompiled binaries

 		
 Building from source

 		
 Develop Mode

 		
 Using retworkx

 		
 Retworkx API

 		
 Graph Classes

 		
 retworkx.PyGraph

 		
 retworkx.PyDiGraph

 		
 retworkx.PyDAG

 		
 Generators

 		
 retworkx.generators.cycle_graph

 		
 retworkx.generators.directed_cycle_graph

 		
 retworkx.generators.path_graph

 		
 retworkx.generators.directed_path_graph

 		
 retworkx.generators.star_graph

 		
 retworkx.generators.directed_star_graph

 		
 retworkx.generators.mesh_graph

 		
 retworkx.generators.directed_mesh_graph

 		
 retworkx.generators.grid_graph

 		
 retworkx.generators.directed_grid_graph

 		
 Random Circuit Functions

 		
 retworkx.directed_gnp_random_graph

 		
 retworkx.undirected_gnp_random_graph

 		
 retworkx.directed_gnm_random_graph

 		
 retworkx.undirected_gnm_random_graph

 		
 Algorithm Functions

 		
 Specific Graph Type Methods

 		
 Universal Functions

 		
 Exceptions

 		
 retworkx.InvalidNode

 		
 retworkx.DAGWouldCycle

 		
 retworkx.NoEdgeBetweenNodes

 		
 retworkx.DAGHasCycle

 		
 retworkx.NoSuitableNeighbors

 		
 retworkx.NoPathFound

 		
 retworkx.NullGraph

 		
 Return Iterator Types

 		
 retworkx.BFSSuccessors

 		
 retworkx.NodeIndices

 		
 retworkx.EdgeList

 		
 retworkx.WeightedEdgeList

 		
 Release Notes

 		
 0.8.0

 		
 Prelude

 		
 New Features

 		
 Bug Fixes

 		
 0.7.2

 		
 Bug Fixes

 		
 0.7.1

 		
 0.7.0

 		
 New Features

 		
 Upgrade Notes

 		
 Fixes

 		
 0.6.0

 		
 New Features

 		
 Upgrade Notes

 		
 Fixes

 		
 0.5.0

 		
 New Features

 		
 Fixes

 		
 0.4.0

 		
 New Features

 		
 Upgrade Notes

 		
 Fixes

 		
 Contributing Guide

 		
 Contributing to retworkx

 		
 Tests

 		
 Style

 		
 Building documentation

 		
 Release Notes

 		
 retworkx for networkx users

 		
 Some Key Differences

 		
 Graph Data and Attributes

 		
 Nodes

 		
 Edges

 		
 Attributes

 		
 Examining elements of a graph

 		
 API Equivalents

 		
 Class Constructors

 		
 Graph Modifiers

 		
 Functionality Gaps

_images/retworkx.PyGraph_3_0.png

_images/retworkx.PyGraph_4_0.png

_images/retworkx.PyDiGraph_6_0.png

_images/retworkx.PyGraph_2_0.png
)

_images/retworkx.generators.cycle_graph_0_0.png

_images/retworkx.generators.directed_cycle_graph_0_0.png

_images/retworkx.PyGraph_5_0.png

_images/retworkx.PyGraph_6_0.png

_images/retworkx.generators.directed_grid_graph_0_0.png

_images/retworkx.generators.directed_mesh_graph_0_0.png

_images/retworkx.generators.directed_path_graph_0_0.png

_images/retworkx.generators.grid_graph_0_0.png

_images/retworkx.generators.mesh_graph_0_0.png

_images/retworkx.generators.directed_star_graph_0_0.png

_images/retworkx.generators.directed_star_graph_1_0.png

_images/retworkx.generators.path_graph_0_0.png
)
&)
&)
@
&)
@
&)
@

_images/retworkx.generators.star_graph_0_0.png

_static/file.png

_static/minus.png

_static/plus.png

_images/release_notes_0_0.png

