
retworkx Documentation
Release 0.8.0

Matthew Treinish

May 24, 2021

CONTENTS

1 retworkx 3
1.1 Installing retworkx . 3

1.1.1 Installing on a platform without precompiled binaries . 3
1.2 Building from source . 4

1.2.1 Develop Mode . 4
1.3 Using retworkx . 4

2 Retworkx API Reference 7
2.1 Graph Classes . 7

2.1.1 retworkx.PyGraph . 7
2.1.2 retworkx.PyDiGraph . 20
2.1.3 retworkx.PyDAG . 37

2.2 Generators . 54
2.2.1 retworkx.generators.cycle_graph . 55
2.2.2 retworkx.generators.directed_cycle_graph . 56
2.2.3 retworkx.generators.path_graph . 58
2.2.4 retworkx.generators.directed_path_graph . 60
2.2.5 retworkx.generators.star_graph . 62
2.2.6 retworkx.generators.directed_star_graph . 63
2.2.7 retworkx.generators.mesh_graph . 65
2.2.8 retworkx.generators.directed_mesh_graph . 66
2.2.9 retworkx.generators.grid_graph . 68
2.2.10 retworkx.generators.directed_grid_graph . 69

2.3 Random Circuit Functions . 71
2.3.1 retworkx.directed_gnp_random_graph . 71
2.3.2 retworkx.undirected_gnp_random_graph . 72
2.3.3 retworkx.directed_gnm_random_graph . 72
2.3.4 retworkx.undirected_gnm_random_graph . 73

2.4 Algorithm Functions . 73
2.4.1 Specific Graph Type Methods . 73
2.4.2 Universal Functions . 96

2.5 Exceptions . 102
2.5.1 retworkx.InvalidNode . 103
2.5.2 retworkx.DAGWouldCycle . 103
2.5.3 retworkx.NoEdgeBetweenNodes . 103
2.5.4 retworkx.DAGHasCycle . 104
2.5.5 retworkx.NoSuitableNeighbors . 104
2.5.6 retworkx.NoPathFound . 104
2.5.7 retworkx.NullGraph . 105

2.6 Return Iterator Types . 105

i

2.6.1 retworkx.BFSSuccessors . 105
2.6.2 retworkx.NodeIndices . 106
2.6.3 retworkx.EdgeList . 107
2.6.4 retworkx.WeightedEdgeList . 107

3 Release Notes 109
3.1 0.8.0 . 109

3.1.1 Prelude . 109
3.1.2 New Features . 109
3.1.3 Bug Fixes . 112

3.2 0.7.2 . 113
3.2.1 Bug Fixes . 113

4 0.7.1 115

5 0.7.0 117
5.1 New Features . 117
5.2 Upgrade Notes . 117
5.3 Fixes . 118

6 0.6.0 119
6.1 New Features . 119
6.2 Upgrade Notes . 120
6.3 Fixes . 120

7 0.5.0 121
7.1 New Features . 121
7.2 Fixes . 122

8 0.4.0 123
8.1 New Features . 123
8.2 Upgrade Notes . 124
8.3 Fixes . 124

9 Contributing 125
9.1 Contributing to retworkx . 125

9.1.1 Tests . 125
9.1.2 Style . 125
9.1.3 Building documentation . 126
9.1.4 Release Notes . 126

10 retworkx for networkx users 129
10.1 Some Key Differences . 129
10.2 Graph Data and Attributes . 130

10.2.1 Nodes . 130
10.2.2 Edges . 131
10.2.3 Attributes . 131
10.2.4 Examining elements of a graph . 131

10.3 API Equivalents . 132
10.3.1 Class Constructors . 132
10.3.2 Graph Modifiers . 132

10.4 Functionality Gaps . 133

Index 135

ii

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

Contents:

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

CONTENTS 1

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

2 CONTENTS

CHAPTER

ONE

RETWORKX

• You can see the full rendered docs at: https://retworkx.readthedocs.io/en/latest/index.html

retworkx is a general purpose graph library for python3 written in Rust to take advantage of the performance and safety
that Rust provides. It was built as a replacement for qiskit‘s previous (and current) networkx usage (hence the name)
but is designed to provide a high performance general purpose graph library for any python application. The project
was originally started to build a faster directed graph to use as the underlying data structure for the DAG at the center
of qiskit-terra‘s transpiler, but it has since grown to cover all the graph usage in Qiskit and other applications.

1.1 Installing retworkx

retworkx is published on pypi so on x86_64, i686, ppc64le, s390x, and aarch64 Linux systems, x86_64 on Mac OSX,
and 32 and 64 bit Windows installing is as simple as running:

pip install retworkx

This will install a precompiled version of retworkx into your python environment.

1.1.1 Installing on a platform without precompiled binaries

If there are no precompiled binaries published for your system you’ll have to build the package from source. However,
to be able able to build the package from the published source package you need to have rust >=1.39 installed (and
also cargo which is normally included with rust) You can use rustup (a cross platform installer for rust) to make this
simpler, or rely on other installation methods. A source package is also published on pypi, so you still can also run the
above pip command to install it. Once you have rust properly installed, running:

pip install retworkx

will build retworkx for your local system from the source package and install it just as it would if there was a prebuilt
binary available.

3

https://opensource.org/licenses/Apache-2.0
https://travis-ci.com/Qiskit/retworkx
https://github.com/Qiskit/retworkx/releases
https://pypi.org/project/retworkx/
https://coveralls.io/github/Qiskit/retworkx?branch=master
https://rust-lang.github.io/rfcs/2495-min-rust-version.html
https://retworkx.readthedocs.io/en/latest/index.html
https://qiskit.org/
https://github.com/Qiskit/qiskit-terra/
https://doc.rust-lang.org/cargo/
https://rustup.rs/
https://forge.rust-lang.org/infra/other-installation-methods.html

retworkx Documentation, Release 0.8.0

1.2 Building from source

The first step for building retworkx from source is to clone it locally with:

git clone https://github.com/Qiskit/retworkx.git

retworkx uses PyO3 and setuptools-rust to build the python interface, which enables using standard python tooling to
work. So, assuming you have rust installed, you can easily install retworkx into your python environment using pip.
Once you have a local clone of the repo, change your current working directory to the root of the repo. Then, you can
install retworkx into your python env with:

pip install .

Assuming your current working directory is still the root of the repo. Otherwise you can run:

pip install $PATH_TO_REPO_ROOT

which will install it the same way. Then retworkx is installed in your local python environment. There are 2 things
to note when doing this though, first if you try to run python from the repo root using this method it will not work as
you expect. There is a name conflict in the repo root because of the local python package shim used in building the
package. Simply run your python scripts or programs using retworkx outside of the repo root. The second issue is
that any local changes you make to the rust code will not be reflected live in your python environment, you’ll need to
recompile retworkx by rerunning pip install to have any changes reflected in your python environment.

1.2.1 Develop Mode

If you’d like to build retworkx in debug mode and use an interactive debugger while working on a change you can
use python setup.py develop to build and install retworkx in develop mode. This will build retworkx without
optimizations and include debuginfo which can be handy for debugging. Do note that installing retworkx this way will
be significantly slower then using pip install and should only be used for debugging/development.

It’s worth noting that pip install -e does not work, as it will link the python packaging shim to your python
environment but not build the retworkx binary. If you want to build retworkx in debug mode you have to use python
setup.py develop.

1.3 Using retworkx

Once you have retworkx installed you can use it by importing retworkx. All the functions and graph classes are off the
root of the package. For example, building a DAG and adding 2 nodes with an edge between them would be:

import retworkx

my_dag = retworkx.PyDAG(cycle_check=True)
add_node(), add_child(), and add_parent() return the node index
The sole argument here can be any python object
root_node = my_dag.add_node("MyRoot")
The second and third arguments can be any python object
my_dag.add_child(root_node, "AChild", ["EdgeData"])

4 Chapter 1. retworkx

https://github.com/pyo3/pyo3
https://github.com/PyO3/setuptools-rust

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

1.3. Using retworkx 5

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

6 Chapter 1. retworkx

CHAPTER

TWO

RETWORKX API REFERENCE

2.1 Graph Classes

retworkx.PyGraph ([multigraph]) A class for creating undirected graphs
retworkx.PyDiGraph ([check_cycle, multigraph]) A class for creating directed graphs
retworkx.PyDAG([check_cycle, multigraph]) A class for creating direct acyclic graphs.

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.1.1 retworkx.PyGraph

class PyGraph(multigraph=True, /)
A class for creating undirected graphs

The PyGraph class is used to create an undirected graph. It can be a multigraph (have multiple edges between
nodes). Each node and edge (although rarely used for edges) is indexed by an integer id. Additionally, each node
and edge contains an arbitrary Python object as a weight/data payload. You can use the index for access to the
data payload as in the following example:

import retworkx

graph = retworkx.PyGraph()
data_payload = "An arbitrary Python object"
node_index = graph.add_node(data_payload)
print("Node Index: %s" % node_index)
print(graph[node_index])

Node Index: 0
An arbitrary Python object

The PyDiGraph implements the Python mapping protocol for nodes so in addition to access you can also update
the data payload with:

7

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

import retworkx

graph = retworkx.PyGraph()
data_payload = "An arbitrary Python object"
node_index = graph.add_node(data_payload)
graph[node_index] = "New Payload"
print("Node Index: %s" % node_index)
print(graph[node_index])

Node Index: 0
New Payload

Parameters multigraph (bool) – When this is set to False the created PyGraph object will not
be a multigraph (which is the default behavior). When False if parallel edges are added the
weight/weight from that method call will be used to update the existing edge in place.

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.
add_edge(node_a, node_b, edge, /) Add an edge between 2 nodes.
add_edges_from(obj_list, /) Add new edges to the graph.
add_edges_from_no_data(obj_list, /) Add new edges to the graph without python data.
add_node(obj, /) Add a new node to the graph.
add_nodes_from(obj_list, /) Add new nodes to the graph.
adj(node, /) Get the index and data for the neighbors of a node.
compose(other, node_map, /[, node_map_func, . . .]) Add another PyGraph object into this PyGraph
degree(node, /) Get the degree for a node
edge_list() Get edge list
edges() Return a list of all edge data.
extend_from_edge_list(edge_list, /) Extend graph from an edge list
extend_from_weighted_edge_list(edge_lsit, /) Extend graph from a weighted edge list
from_adjacency_matrix(matrix, /) Create a new PyGraph object from an adjacency ma-

trix
get_all_edge_data(node_a, node_b, /) Return the edge data for all the edges between 2

nodes.
get_edge_data(node_a, node_b, /) Return the edge data for the edge between 2 nodes.
get_node_data(node, /) Return the node data for a given node index
has_edge(node_a, node_b, /) Return True if there is an edge between node_a to

node_b.
neighbors(node, /) Get the neighbors of a node.
node_indexes() Return a list of all node indexes.
nodes() Return a list of all node data.
read_edge_list(path, /[, comment, deliminator]) Read an edge list file and create a new PyGraph object

from the contents
remove_edge(node_a, node_b, /) Remove an edge between 2 nodes.
remove_edge_from_index(edge, /) Remove an edge identified by the provided index

continues on next page

8 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

Table 2 – continued from previous page
remove_edges_from(index_list, /) Remove edges from the graph.
remove_node(node, /) Remove a node from the graph.
remove_nodes_from(index_list, /) Remove nodes from the graph.
subgraph (nodes, /) Return a new PyGraph object for a subgraph of this

graph
to_dot([node_attr, edge_attr, graph_attr, . . .]) Generate a dot file from the graph
update_edge(source, target, /, edge) Update an edge’s weight/payload in place
update_edge_by_index(source, target, /, edge) Update an edge’s weight/data payload in place by the

edge index
weighted_edge_list() Get edge list with weights

Attributes

multigraph Whether the graph is a multigraph (allows multiple
edges between nodes) or not

add_edge(node_a, node_b, edge, /)
Add an edge between 2 nodes.

If multigraph is False and an edge already exists between node_a and node_b the weight/payload of
that existing edge will be updated to be edge.

Parameters

• node_a (int) – Index of the parent node

• node_b (int) – Index of the child node

• edge – The object to set as the data for the edge. It can be any python object.

Returns The edge index for the newly created (or updated in the case of an existing edge with
multigraph=False) edge.

Return type int

add_edges_from(obj_list, /)
Add new edges to the graph.

Parameters obj_list (list) – A list of tuples of the form (node_a, node_b, obj) to attach
to the graph. node_a and node_b are integer indexes describing where an edge should be
added, and obj is the python object for the edge data.

If multigraph is False and an edge already exists between node_a and node_b the weight/payload of
that existing edge will be updated to be edge. This will occur in order from obj_list so if there are
multiple parallel edges in obj_list the last entry will be used.

Returns A list of int indices of the newly created edges

Return type list

add_edges_from_no_data(obj_list, /)
Add new edges to the graph without python data.

Parameters obj_list (list) – A list of tuples of the form (parent, child) to attach to the
graph. parent and child are integer indexes describing where an edge should be added.
Unlike add_edges_from() there is no data payload and when the edge is created None will
be used.

2.1. Graph Classes 9

retworkx Documentation, Release 0.8.0

If multigraph is False and an edge already exists between node_a and node_b the weight/payload of
that existing edge will be updated to be None.

Returns A list of int indices of the newly created edges

Return type list

add_node(obj, /)
Add a new node to the graph.

Parameters obj – The python object to attach to the node

Returns The index of the newly created node

Return type int

add_nodes_from(obj_list, /)
Add new nodes to the graph.

Parameters obj_list (list) – A list of python object to attach to the graph.

Returns indices A list of int indices of the newly created nodes

Return type NodeIndices

adj(node, /)
Get the index and data for the neighbors of a node.

This will return a dictionary where the keys are the node indexes of the adjacent nodes (inbound or out-
bound) and the value is the edge data objects between that adjacent node and the provided node. Note, that
in the case of multigraphs only a single edge data object will be returned

Parameters node (int) – The index of the node to get the neighbors

Returns neighbors A dictionary where the keys are node indexes and the value is the edge data
object for all nodes that share an edge with the specified node.

Return type dict

compose(other, node_map, /, node_map_func=None, edge_map_func=None)
Add another PyGraph object into this PyGraph

Parameters

• other (PyGraph) – The other PyGraph object to add onto this graph.

• node_map (dict) – A dictionary mapping node indexes from this PyGraph object to node
indexes in the other PyGraph object. The keys are a node index in this graph and the value
is a tuple of the node index in the other graph to add an edge to and the weight of that edge.
For example:

{
1: (2, "weight"),
2: (4, "weight2")

}

• node_map_func – An optional python callable that will take in a single node weight/data
object and return a new node weight/data object that will be used when adding an node
from other onto this graph.

• edge_map_func – An optional python callabble that will take in a single edge weight/data
object and return a new edge weight/data object that will be used when adding an edge
from other onto this graph.

10 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

Returns new_node_ids: A dictionary mapping node index from the other PyGraph to the equiv-
alent node index in this PyDAG after they’ve been combined

Return type dict

For example, start by building a graph:

import os
import tempfile

import pydot
from PIL import Image

import retworkx

Build first graph and visualize:
graph = retworkx.PyGraph()
node_a, node_b, node_c = graph.add_nodes_from(['A', 'B', 'C'])
graph.add_edges_from_no_data([(node_a, node_b), (node_b, node_c)])
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'graph.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

Then build a second one:

Build second graph and visualize:
other_graph = retworkx.PyGraph()
node_d, node_e = other_graph.add_nodes_from(['D', 'E'])
other_graph.add_edge(node_d, node_e, None)
dot_str = other_graph.to_dot(

(continues on next page)

2.1. Graph Classes 11

retworkx Documentation, Release 0.8.0

(continued from previous page)

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'other_graph.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

Finally compose the other_graph onto graph

node_map = {node_b: (node_d, 'B to D')}
graph.compose(other_graph, node_map)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'combined_graph.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

12 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

degree(node, /)
Get the degree for a node

Parameters node (int) – The index of the node to find the inbound degree of

Returns degree The inbound degree for the specified node

Return type int

edge_list()
Get edge list

Returns a list of tuples of the form (source, target) where source and target are the node indices.

Returns An edge list with weights

Return type EdgeList

edges()
Return a list of all edge data.

Returns A list of all the edge data objects in the graph

Return type list

extend_from_edge_list(edge_list, /)
Extend graph from an edge list

This method differs from add_edges_from_no_data() in that it will add nodes if a node index is not
present in the edge list.

If multigraph is False and an edge already exists between node_a and node_b the weight/payload of
that existing edge will be updated to be None.

Parameters edge_list (list) – A list of tuples of the form (source, target) where source
and target are integer node indices. If the node index is not present in the graph, nodes will
be added (with a node weight of None) to that index.

2.1. Graph Classes 13

retworkx Documentation, Release 0.8.0

extend_from_weighted_edge_list(edge_lsit, /)
Extend graph from a weighted edge list

This method differs from add_edges_from() in that it will add nodes if a node index is not present in the
edge list.

If multigraph is False and an edge already exists between node_a and node_b the weight/payload of
that existing edge will be updated to be edge. This will occur in order from obj_list so if there are
multiple parallel edges in obj_list the last entry will be used.

Parameters edge_list (list) – A list of tuples of the form (source, target, weight)
where source and target are integer node indices. If the node index is not present in the graph,
nodes will be added (with a node weight of None) to that index.

static from_adjacency_matrix(matrix, /)
Create a new PyGraph object from an adjacency matrix

This method can be used to construct a new PyGraph object from an input adjacency matrix. The node
weights will be the index from the matrix. The edge weights will be a float value of the value from the
matrix.

Parameters matrix (ndarray) – The input numpy array adjacency matrix to create a new
PyGraph object from. It must be a 2 dimensional array and be a float/np.float64 data
type.

Returns A new graph object generated from the adjacency matrix

Return type PyGraph

get_all_edge_data(node_a, node_b, /)
Return the edge data for all the edges between 2 nodes.

Parameters

• node_a (int) – The index for the first node

• node_b (int) – The index for the second node

Returns A list with all the data objects for the edges between nodes

Return type list

Raises NoEdgeBetweenNodes – When there is no edge between nodes

get_edge_data(node_a, node_b, /)
Return the edge data for the edge between 2 nodes.

Note if there are multiple edges between the nodes only one will be returned. To get all edge data
objects use get_all_edge_data()

Parameters

• node_a (int) – The index for the first node

• node_b (int) – The index for the second node

Returns The data object set for the edge

Raises NoEdgeBetweenNodes – when there is no edge between the provided nodes

get_node_data(node, /)
Return the node data for a given node index

Parameters node (int) – The index for the node

14 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

Returns The data object set for that node

Raises IndexError – when an invalid node index is provided

has_edge(node_a, node_b, /)
Return True if there is an edge between node_a to node_b.

Parameters

• node_a (int) – The node index to check for an edge between

• node_b (int) – The node index to check for an edge between

Returns True if there is an edge false if there is no edge

Return type bool

multigraph
Whether the graph is a multigraph (allows multiple edges between nodes) or not

If set to False multiple edges between nodes are not allowed and calls that would add a parallel edge will
instead update the existing edge

neighbors(node, /)
Get the neighbors of a node.

This with return a list of neighbor node indices

Parameters node (int) – The index of the node to get the neibhors of

Returns A list of the neighbor node indicies

Return type NodeIndices

node_indexes()
Return a list of all node indexes.

Returns A list of all the node indexes in the graph

Return type NodeIndices

nodes()
Return a list of all node data.

Returns A list of all the node data objects in the graph

Return type list

static read_edge_list(path, /, comment=None, deliminator=None)
Read an edge list file and create a new PyGraph object from the contents

The expected format for the edge list file is a line seperated list of deliminated node ids. If there are more
than 3 elements on a line the 3rd on will be treated as a string weight for the edge

Parameters

• path (str) – The path of the file to open

• comment (str) – Optional character to use as a comment by default there are no comment
characters

• deliminator (str) – Optional character to use as a deliminator by default any whitespace
will be used

For example:

2.1. Graph Classes 15

retworkx Documentation, Release 0.8.0

import os
import tempfile

from PIL import Image
import pydot

import retworkx

with tempfile.NamedTemporaryFile('wt') as fd:
path = fd.name
fd.write('0 1\n')
fd.write('0 2\n')
fd.write('0 3\n')
fd.write('1 2\n')
fd.write('2 3\n')
fd.flush()
graph = retworkx.PyGraph.read_edge_list(path)

Draw graph
dot = pydot.graph_from_dot_data(graph.to_dot())[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

remove_edge(node_a, node_b, /)
Remove an edge between 2 nodes.

16 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

Note if there are multiple edges between the specified nodes only one will be removed.

Parameters

• parent (int) – The index for the parent node.

• child (int) – The index of the child node.

Raises NoEdgeBetweenNodes – If there are no edges between the nodes specified

remove_edge_from_index(edge, /)
Remove an edge identified by the provided index

Parameters edge (int) – The index of the edge to remove

remove_edges_from(index_list, /)
Remove edges from the graph.

Note if there are multiple edges between the specified nodes only one will be removed.

Parameters index_list (list) – A list of node index pairs to remove from the graph

remove_node(node, /)
Remove a node from the graph.

Parameters node (int) – The index of the node to remove. If the index is not present in the
graph it will be ignored and this function will have no effect.

remove_nodes_from(index_list, /)
Remove nodes from the graph.

If a node index in the list is not present in the graph it will be ignored.

Parameters index_list (list) – A list of node indicies to remove from the the graph

subgraph(nodes, /)
Return a new PyGraph object for a subgraph of this graph

Parameters nodes (list) – A list of node indices to generate the subgraph from. If a node index
is included that is not present in the graph it will silently be ignored.

Returns A new PyGraph object representing a subgraph of this graph. It is worth noting that
node and edge weight/data payloads are passed by reference so if you update (not replace) an
object used as the weight in graph or the subgraph it will also be updated in the other.

Return type PyGraph

to_dot(node_attr=None, edge_attr=None, graph_attr=None, filename=None)
Generate a dot file from the graph

Parameters

• node_attr – A callable that will take in a node data object and return a dictionary of
attributes to be associated with the node in the dot file. The key and value of this dictionary
must be a string. If they’re not strings retworkx will raise TypeError (unfortunately without
an error message because of current limitations in the PyO3 type checking)

• edge_attr – A callable that will take in an edge data object and return a dictionary of
attributes to be associated with the node in the dot file. The key and value of this dictionary
must be a string. If they’re not strings retworkx will raise TypeError (unfortunately without
an error message because of current limitations in the PyO3 type checking)

• graph_attr (dict) – An optional dictionary that specifies any graph attributes for the
output dot file. The key and value of this dictionary must be a string. If they’re not strings

2.1. Graph Classes 17

retworkx Documentation, Release 0.8.0

retworkx will raise TypeError (unfortunately without an error message because of current
limitations in the PyO3 type checking)

• filename (str) – An optional path to write the dot file to if specified there is no return
from the function

Returns A string with the dot file contents if filename is not specified.

Return type str

Using this method enables you to leverage graphviz to visualize a retworkx.PyGraph object. For exam-
ple:

import os
import tempfile

import pydot
from PIL import Image

import retworkx

graph = retworkx.undirected_gnp_random_graph(15, .25)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

18 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

update_edge(source, target, /, edge)
Update an edge’s weight/payload in place

If there are parallel edges in the graph only one edge will be updated. if you need to update a specific edge
or need to ensure all parallel edges get updated you should use update_edge_by_index() instead.

Parameters

• source (int) – The index for the first node

• target (int) – The index for the second node

Raises NoEdgeBetweenNodes – When there is no edge between nodes

update_edge_by_index(source, target, /, edge)
Update an edge’s weight/data payload in place by the edge index

Parameters

• edge_index (int) – The index for the edge

• edge (object) – The data payload/weight to update the edge with

Raises NoEdgeBetweenNodes – When there is no edge between nodes

weighted_edge_list()
Get edge list with weights

Returns a list of tuples of the form (source, target, weight) where source and target are the node
indices and weight is the payload of the edge.

Returns An edge list with weights

Return type WeightedEdgeList

2.1. Graph Classes 19

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.1.2 retworkx.PyDiGraph

class PyDiGraph(check_cycle=False, multigraph=True, /)
A class for creating directed graphs

The PyDiGraph class is used to create a directed graph. It can be a multigraph (have multiple edges between
nodes). Each node and edge (although rarely used for edges) is indexed by an integer id. Additionally each node
and edge contains an arbitrary Python object as a weight/data payload. You can use the index for access to the
data payload as in the following example:

import retworkx

graph = retworkx.PyDiGraph()
data_payload = "An arbitrary Python object"
node_index = graph.add_node(data_payload)
print("Node Index: %s" % node_index)
print(graph[node_index])

Node Index: 0
An arbitrary Python object

The PyDiGraph implements the Python mapping protocol for nodes so in addition to access you can also update
the data payload with:

import retworkx

graph = retworkx.PyDiGraph()
data_payload = "An arbitrary Python object"
node_index = graph.add_node(data_payload)
graph[node_index] = "New Payload"
print("Node Index: %s" % node_index)
print(graph[node_index])

Node Index: 0
New Payload

The PyDiGraph class has an option for real time cycle checking which can be used to ensure any edges added to
the graph does not introduce a cycle. By default the real time cycle checking feature is disabled for performance,
however you can enable it by setting the check_cycle attribute to True. For example:

import retworkx
dag = retworkx.PyDiGraph()
dag.check_cycle = True

or at object creation:

20 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

import retworkx
dag = retworkx.PyDiGraph(check_cycle=True)

With check_cycle set to true any calls to PyDiGraph.add_edge() will ensure that no cycles are added, en-
suring that the PyDiGraph class truly represents a directed acyclic graph. Do note that this cycle check-
ing on add_edge(), add_edges_from(), add_edges_from_no_data(), extend_from_edge_list(), and
extend_from_weighted_edge_list() comes with a performance penalty that grows as the graph does.
If you’re adding a node and edge at the same time leveraging PyDiGraph.add_child() or PyDiGraph.
add_parent() will avoid this overhead.

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.
add_child(parent, obj, edge, /) Add a new child node to the graph.
add_edge(parent, child, edge, /) Add an edge between 2 nodes.
add_edges_from(obj_list, /) Add new edges to the dag.
add_edges_from_no_data(obj_list, /) Add new edges to the dag without python data.
add_node(obj, /) Add a new node to the graph.
add_nodes_from(obj_list, /) Add new nodes to the graph.
add_parent(child, obj, edge, /) Add a new parent node to the dag.
adj(node, /) Get the index and data for the neighbors of a node.
adj_direction(node, direction, /) Get the index and data for either the parent or children

of a node.
compose(other, node_map, /[, node_map_func, . . .]) Add another PyDiGraph object into this PyDiGraph
edge_list Get edge list
edges() Return a list of all edge data.
extend_from_edge_list(edge_list, /) Extend graph from an edge list
extend_from_weighted_edge_list(edge_lsit, /) Extend graph from a weighted edge list
find_adjacent_node_by_edge(node, predicate,
/)

Find a target node with a specific edge

find_node_by_weight Find node within this graph given a specific weight
from_adjacency_matrix(matrix, /) Create a new PyDiGraph object from an adjacency

matrix
get_all_edge_data(node_a, node_b, /) Return the edge data for all the edges between 2

nodes.
get_edge_data(node_a, node_b, /) Return the edge data for an edge between 2 nodes.
get_node_data(node, /) Return the node data for a given node index
has_edge(node_a, node_b, /) Return True if there is an edge from node_a to

node_b.
in_degree(node, /) Get the degree of a node for inbound edges.
in_edges(node, /) Get the index and edge data for all parents of a node.
insert_node_on_in_edges(node, ref_node, /) Insert a node between a reference node and all its pre-

decessor nodes
insert_node_on_in_edges_multiple(node,
. . .)

Insert a node between a list of reference nodes and all
their predecessors

insert_node_on_out_edges(node, ref_node, /) Insert a node between a reference node and all its suc-
cessor nodes

continues on next page

2.1. Graph Classes 21

retworkx Documentation, Release 0.8.0

Table 4 – continued from previous page
insert_node_on_out_edges_multiple(node,
. . .)

Insert a node between a list of reference nodes and all
their successors

is_symmetric() Check if the graph is symmetric
merge_nodes(u, /, v) Merge two nodes in the graph.
neighbors(node, /) Get the neighbors (i.e.
node_indexes() Return a list of all node indexes.
nodes() Return a list of all node data.
out_degree(node, /) Get the degree of a node for outbound edges.
out_edges(node, /) Get the index and edge data for all children of a node.
predecessor_indices(node, /) Get the predecessor indices of a node.
predecessors(node, /) Return a list of all the node predecessor data.
read_edge_list(path, /[, comment, deliminator]) Read an edge list file and create a new PyDiGraph

object from the contents
remove_edge(parent, child, /) Remove an edge between 2 nodes.
remove_edge_from_index(edge, /) Remove an edge identified by the provided index
remove_edges_from(index_list, /) Remove edges from the graph.
remove_node(node, /) Remove a node from the graph.
remove_node_retain_edges(node, /[, . . .]) Remove a node from the graph and add edges from

all predecessors to all successors
remove_nodes_from(index_list, /) Remove nodes from the graph.
subgraph (nodes, /) Return a new PyDiGraph object for a subgraph of this

graph
successor_indices(node, /) Get the successor indices of a node.
successors(node, /) Return a list of all the node successor data.
to_dot([node_attr, edge_attr, graph_attr, . . .]) Generate a dot file from the graph
to_undirected() Generate a new PyGraph object from this graph
update_edge(source, target, /, edge) Update an edge’s weight/payload inplace
update_edge_by_index(source, target, /, edge) Update an edge’s weight/payload by the edge index
weighted_edge_list Get edge list with weights

Attributes

check_cycle Whether cycle checking is enabled for the Di-
Graph/DAG.

multigraph Whether the graph is a multigraph (allows multiple
edges between nodes) or not

add_child(parent, obj, edge, /)
Add a new child node to the graph.

This will create a new node on the graph and add an edge from the parent to that new node.

Parameters

• parent (int) – The index for the parent node

• obj – The python object to attach to the node

• edge – The python object to attach to the edge

Returns The index of the newly created child node

Return type int

22 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

add_edge(parent, child, edge, /)
Add an edge between 2 nodes.

Use add_child() or add_parent() to create a node with an edge at the same time as an edge for better perfor-
mance. Using this method will enable adding duplicate edges between nodes if the check_cycle attribute
is set to True.

Parameters

• parent (int) – Index of the parent node

• child (int) – Index of the child node

• edge – The object to set as the data for the edge. It can be any python object.

Returns The edge index of the created edge

Return type int

Raises When the new edge will create a cycle

add_edges_from(obj_list, /)
Add new edges to the dag.

Parameters obj_list (list) – A list of tuples of the form (parent, child, obj) to attach
to the graph. parent and child are integer indexes describing where an edge should be
added, and obj is the python object for the edge data.

Returns A list of int indices of the newly created edges

Return type list

add_edges_from_no_data(obj_list, /)
Add new edges to the dag without python data.

Parameters obj_list (list) – A list of tuples of the form (parent, child) to attach to the
graph. parent and child are integer indexes describing where an edge should be added.
Unlike add_edges_from() there is no data payload and when the edge is created None will
be used.

Returns A list of int indices of the newly created edges

Return type list

add_node(obj, /)
Add a new node to the graph.

Parameters obj – The python object to attach to the node

Returns The index of the newly created node

Return type int

add_nodes_from(obj_list, /)
Add new nodes to the graph.

Parameters obj_list (list) – A list of python objects to attach to the graph as new nodes

Returns A list of int indices of the newly created nodes

Return type NodeIndices

add_parent(child, obj, edge, /)
Add a new parent node to the dag.

This create a new node on the dag and add an edge to the child from that new node

2.1. Graph Classes 23

retworkx Documentation, Release 0.8.0

Parameters

• child (int) – The index of the child node

• obj – The python object to attach to the node

• edge – The python object to attach to the edge

Returns index The index of the newly created parent node

Return type int

adj(node, /)
Get the index and data for the neighbors of a node.

This will return a dictionary where the keys are the node indexes of the adjacent nodes (inbound or out-
bound) and the value is the edge dat objects between that adjacent node and the provided node. Note in the
case of a multigraph only one edge will be used, not all of the edges between two node.

Parameters node (int) – The index of the node to get the neighbors

Returns A dictionary where the keys are node indexes and the value is the edge data object for
all nodes that share an edge with the specified node.

Return type dict

adj_direction(node, direction, /)
Get the index and data for either the parent or children of a node.

This will return a dictionary where the keys are the node indexes of the adjacent nodes (inbound or outbound
as specified) and the value is the edge data objects for the edges between that adjacent node and the provided
node. Note in the case of a multigraph only one edge one edge will be used, not all of the edges between
two node.

Parameters

• node (int) – The index of the node to get the neighbors

• direction (bool) – The direction to use for finding nodes, True means inbound edges
and False means outbound edges.

Returns A dictionary where the keys are node indexes and the value is the edge data object for
all nodes that share an edge with the specified node.

Return type dict

check_cycle
Whether cycle checking is enabled for the DiGraph/DAG.

If set to True adding new edges that would introduce a cycle will raise a DAGWouldCycle exception.

compose(other, node_map, /, node_map_func=None, edge_map_func=None)
Add another PyDiGraph object into this PyDiGraph

Parameters

• other (PyDiGraph) – The other PyDiGraph object to add onto this graph.

• node_map (dict) – A dictionary mapping node indexes from this PyDiGraph object to
node indexes in the other PyDiGraph object. The keys are a node index in this graph and
the value is a tuple of the node index in the other graph to add an edge to and the weight of
that edge. For example:

24 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

{
1: (2, "weight"),
2: (4, "weight2")

}

• node_map_func – An optional python callable that will take in a single node weight/data
object and return a new node weight/data object that will be used when adding an node
from other onto this graph.

• edge_map_func – An optional python callable that will take in a single edge weight/data
object and return a new edge weight/data object that will be used when adding an edge
from other onto this graph.

Returns new_node_ids: A dictionary mapping node index from the other PyDiGraph to the cor-
responding node index in this PyDAG after they’ve been combined

Return type dict

For example, start by building a graph:

import os
import tempfile

import pydot
from PIL import Image

import retworkx

Build first graph and visualize:
graph = retworkx.PyDiGraph()
node_a = graph.add_node('A')
node_b = graph.add_child(node_a, 'B', 'A to B')
node_c = graph.add_child(node_b, 'C', 'B to C')
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'graph.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

2.1. Graph Classes 25

retworkx Documentation, Release 0.8.0

Then build a second one:

Build second graph and visualize:
other_graph = retworkx.PyDiGraph()
node_d = other_graph.add_node('D')
other_graph.add_child(node_d, 'E', 'D to E')
dot_str = other_graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'other_graph.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

Finally compose the other_graph onto graph

node_map = {node_b: (node_d, 'B to D')}
graph.compose(other_graph, node_map)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

(continues on next page)

26 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

(continued from previous page)

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'combined_graph.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

edge_list()
Get edge list

Returns a list of tuples of the form (source, target) where source and target are the node indices.

Returns An edge list with weights

Return type EdgeList

edges()
Return a list of all edge data.

Returns A list of all the edge data objects in the graph

Return type list

extend_from_edge_list(edge_list, /)
Extend graph from an edge list

This method differs from add_edges_from_no_data() in that it will add nodes if a node index is not
present in the edge list.

Parameters edge_list (list) – A list of tuples of the form (source, target) where source
and target are integer node indices. If the node index is not present in the graph, nodes will
be added (with a node weight of None) to that index.

extend_from_weighted_edge_list(edge_lsit, /)
Extend graph from a weighted edge list

2.1. Graph Classes 27

retworkx Documentation, Release 0.8.0

This method differs from add_edges_from() in that it will add nodes if a node index is not present in the
edge list.

Parameters edge_list (list) – A list of tuples of the form (source, target, weight)
where source and target are integer node indices. If the node index is not present in the graph
nodes will be added (with a node weight of None) to that index.

find_adjacent_node_by_edge(node, predicate, /)
Find a target node with a specific edge

This method is used to find a target node that is a adjacent to a given node given an edge condition.

Parameters

• node (int) – The node to use as the source of the search

• predicate (callable) – A python callable that will take a single parameter, the edge
object, and will return a boolean if the edge matches or not

Returns The node object that has an edge to it from the provided node index which matches the
provided condition

find_node_by_weight()
Find node within this graph given a specific weight

This algorithm has a worst case of O(n) since it searches the node indices in order. If there is more than
one node in the graph with the same weight only the first match (by node index) will be returned.

Parameters obj – The weight to look for in the graph.

Returns the index of the first node in the graph that is equal to the weight. If no match is found
None will be returned.

Return type int

static from_adjacency_matrix(matrix, /)
Create a new PyDiGraph object from an adjacency matrix

This method can be used to construct a new PyDiGraph object from an input adjacency matrix. The node
weights will be the index from the matrix. The edge weights will be a float value of the value from the
matrix.

Parameters matrix (ndarray) – The input numpy array adjacency matrix to create a new
PyDiGraph object from. It must be a 2 dimensional array and be a float/np.float64
data type.

Returns A new graph object generated from the adjacency matrix

Return type PyDiGraph

get_all_edge_data(node_a, node_b, /)
Return the edge data for all the edges between 2 nodes.

Parameters

• node_a (int) – The index for the first node

• node_b (int) – The index for the second node

Returns A list with all the data objects for the edges between nodes

Return type list

Raises NoEdgeBetweenNodes – When there is no edge between nodes

28 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

get_edge_data(node_a, node_b, /)
Return the edge data for an edge between 2 nodes.

Parameters

• node_a (int) – The index for the first node

• node_b (int) – The index for the second node

Returns The data object set for the edge

Raises NoEdgeBetweenNodes – When there is no edge between nodes

get_node_data(node, /)
Return the node data for a given node index

Parameters node (int) – The index for the node

Returns The data object set for that node

Raises IndexError – when an invalid node index is provided

has_edge(node_a, node_b, /)
Return True if there is an edge from node_a to node_b.

Parameters

• node_a (int) – The source node index to check for an edge

• node_b (int) – The destination node index to check for an edge

Returns True if there is an edge false if there is no edge

Return type bool

in_degree(node, /)
Get the degree of a node for inbound edges.

Parameters node (int) – The index of the node to find the inbound degree of

Returns The inbound degree for the specified node

Return type int

in_edges(node, /)
Get the index and edge data for all parents of a node.

This will return a list of tuples with the parent index the node index and the edge data. This can be used to
recreate add_edge() calls. :param int node: The index of the node to get the edges for

Parameters node (int) – The index of the node to get the edges for

Returns A list of tuples of the form: (parent_index, node_index, edge_data)`

Return type WeightedEdgeList

insert_node_on_in_edges(node, ref_node, /)
Insert a node between a reference node and all its predecessor nodes

This essentially iterates over all edges into the reference node specified in the ref_node parameter removes
those edges and then adds 2 edges, one from the predecessor of ref_node to node and the other from node
to ref_node. The edge payloads for the newly created edges are copied by reference from the original edge
that gets removed.

Parameters

• node (int) – The node index to insert between

2.1. Graph Classes 29

retworkx Documentation, Release 0.8.0

• ref_node (int) – The reference node index to insert node between

insert_node_on_in_edges_multiple(node, ref_nodes, /)
Insert a node between a list of reference nodes and all their predecessors

This essentially iterates over all edges into the reference node specified in the ref_nodes parameter re-
moves those edges and then adds 2 edges, one from the predecessor of ref_node to node and the other
from node to ref_node. The edge payloads for the newly created edges are copied by reference from the
original edge that gets removed.

Parameters

• node (int) – The node index to insert between

• ref_node (int) – The reference node index to insert node between

insert_node_on_out_edges(node, ref_node, /)
Insert a node between a reference node and all its successor nodes

This essentially iterates over all edges out of the reference node specified in the ref_node parameter re-
moves those edges and then adds 2 edges, one from ref_node to node and the other from node to the
successor of ref_node. The edge payloads for the newly created edges are copied by reference from the
original edge that gets removed.

Parameters

• node (int) – The node index to insert between

• ref_node (int) – The reference node index to insert node between

insert_node_on_out_edges_multiple(node, ref_nodes, /)
Insert a node between a list of reference nodes and all their successors

This essentially iterates over all edges out of the reference node specified in the ref_node parameter re-
moves those edges and then adds 2 edges, one from ref_node to node and the other from node to the
successor of ref_node. The edge payloads for the newly created edges are copied by reference from the
original edge that gets removed.

Parameters

• node (int) – The node index to insert between

• ref_nodes (int) – The list of node indices to insert node between

is_symmetric()
Check if the graph is symmetric

Returns True if the graph is symmetric

Return type bool

merge_nodes(u, /, v)
Merge two nodes in the graph.

If the nodes have equal weight objects then all the edges into and out of u will be added to v and u will be
removed from the graph. If the nodes don’t have equal weight objects then no changes will be made and no
error raised

Parameters

• u (int) – The source node that is going to be merged

• v (int) – The target node that is going to be the new node

30 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

multigraph
Whether the graph is a multigraph (allows multiple edges between nodes) or not

If set to False multiple edges between nodes are not allowed and calls that would add a parallel edge will
instead update the existing edge

neighbors(node, /)
Get the neighbors (i.e. successors) of a node.

This will return a list of neighbor node indices. This function is equivalent to successor_indices().

Parameters node (int) – The index of the node to get the neighbors of

Returns A list of the neighbor node indices

Return type NodeIndices

node_indexes()
Return a list of all node indexes.

Returns A list of all the node indexes in the graph

Return type NodeIndices

nodes()
Return a list of all node data.

Returns A list of all the node data objects in the graph

Return type list

out_degree(node, /)
Get the degree of a node for outbound edges.

Parameters node (int) – The index of the node to find the outbound degree of

Returns The outbound degree for the specified node

Return type int

out_edges(node, /)
Get the index and edge data for all children of a node.

This will return a list of tuples with the child index the node index and the edge data. This can be used to
recreate add_edge() calls.

Parameters node (int) – The index of the node to get the edges for

Returns out_edges A list of tuples of the form: `(node_index, child_index,
edge_data)`

Return type WeightedEdgeList

predecessor_indices(node, /)
Get the predecessor indices of a node.

This will return a list of the node indicies for the predecessors of a node

Parameters node (int) – The index of the node to get the predecessors of

Returns A list of the neighbor node indicies

Return type NodeIndices

predecessors(node, /)
Return a list of all the node predecessor data.

Parameters node (int) – The index for the node to get the predecessors for

2.1. Graph Classes 31

retworkx Documentation, Release 0.8.0

Returns A list of the node data for all the parent neighbor nodes

Return type list

static read_edge_list(path, /, comment=None, deliminator=None)
Read an edge list file and create a new PyDiGraph object from the contents

The expected format for the edge list file is a line seperated list of deliminated node ids. If there are more
than 3 elements on a line the 3rd on will be treated as a string weight for the edge

Parameters

• path (str) – The path of the file to open

• comment (str) – Optional character to use as a comment by default there are no comment
characters

• deliminator (str) – Optional character to use as a deliminator by default any whitespace
will be used

For example:

import os
import tempfile

from PIL import Image
import pydot

import retworkx

with tempfile.NamedTemporaryFile('wt') as fd:
path = fd.name
fd.write('0 1\n')
fd.write('0 2\n')
fd.write('0 3\n')
fd.write('1 2\n')
fd.write('2 3\n')
fd.flush()
graph = retworkx.PyDiGraph.read_edge_list(path)

Draw graph
dot = pydot.graph_from_dot_data(graph.to_dot())[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

32 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

remove_edge(parent, child, /)
Remove an edge between 2 nodes.

Note if there are multiple edges between the specified nodes only one will be removed.

Parameters

• parent (int) – The index for the parent node.

• child (int) – The index of the child node.

Raises NoEdgeBetweenNodes – If there are no edges between the nodes specified

remove_edge_from_index(edge, /)
Remove an edge identified by the provided index

Parameters edge (int) – The index of the edge to remove

remove_edges_from(index_list, /)
Remove edges from the graph.

Note if there are multiple edges between the specified nodes only one will be removed.

Parameters index_list (list) – A list of node index pairs to remove from the graph

remove_node(node, /)
Remove a node from the graph.

Parameters node (int) – The index of the node to remove. If the index is not present in the
graph it will be ignored and this function will have no effect.

remove_node_retain_edges(node, /, use_outgoing=None, condition=None)
Remove a node from the graph and add edges from all predecessors to all successors

By default the data/weight on edges into the removed node will be used for the retained edges.

Parameters

2.1. Graph Classes 33

retworkx Documentation, Release 0.8.0

• node (int) – The index of the node to remove. If the index is not present in the graph it
will be ingored and this function willl have no effect.

• use_outgoing (bool) – If set to true the weight/data from the edge outgoing from node
will be used in the retained edge instead of the default weight/data from the incoming edge.

• condition – A callable that will be passed 2 edge weight/data objects, one from the in-
coming edge to node the other for the outgoing edge, and will return a bool on whether
an edge should be retained. For example setting this kwarg to:

lambda in_edge, out_edge: in_edge == out_edge

would only retain edges if the input edge to node had the same data payload as the outgoing
edge.

remove_nodes_from(index_list, /)
Remove nodes from the graph.

If a node index in the list is not present in the graph it will be ignored.

Parameters index_list (list) – A list of node indicies to remove from the the graph.

subgraph(nodes, /)
Return a new PyDiGraph object for a subgraph of this graph

Parameters nodes (list) – A list of node indices to generate the subgraph from. If a node index
is included that is not present in the graph it will silently be ignored.

Returns A new PyDiGraph object representing a subgraph of this graph. It is worth noting that
node and edge weight/data payloads are passed by reference so if you update (not replace) an
object used as the weight in graph or the subgraph it will also be updated in the other.

Return type PyGraph

successor_indices(node, /)
Get the successor indices of a node.

This will return a list of the node indicies for the succesors of a node

Parameters node (int) – The index of the node to get the successors of

Returns A list of the neighbor node indicies

Return type NodeIndices

successors(node, /)
Return a list of all the node successor data.

Parameters node (int) – The index for the node to get the successors for

Returns A list of the node data for all the child neighbor nodes

Return type list

to_dot(node_attr=None, edge_attr=None, graph_attr=None, filename=None)
Generate a dot file from the graph

Parameters

• node_attr – A callable that will take in a node data object and return a dictionary of
attributes to be associated with the node in the dot file. The key and value of this dictionary
must be strings. If they’re not strings retworkx will raise TypeError (unfortunately without
an error message because of current limitations in the PyO3 type checking)

34 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

• edge_attr – A callable that will take in an edge data object and return a dictionary of
attributes to be associated with the node in the dot file. The key and value of this dictionary
must be a string. If they’re not strings retworkx will raise TypeError (unfortunately without
an error message because of current limitations in the PyO3 type checking)

• graph_attr (dict) – An optional dictionary that specifies any graph attributes for the
output dot file. The key and value of this dictionary must be a string. If they’re not strings
retworkx will raise TypeError (unfortunately without an error message because of current
limitations in the PyO3 type checking)

• filename (str) – An optional path to write the dot file to if specified there is no return
from the function

Returns A string with the dot file contents if filename is not specified.

Return type str

Using this method enables you to leverage graphviz to visualize a retworkx.PyDiGraph object. For
example:

import os
import tempfile

import pydot
from PIL import Image

import retworkx

graph = retworkx.directed_gnp_random_graph(15, .25)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

2.1. Graph Classes 35

retworkx Documentation, Release 0.8.0

to_undirected()
Generate a new PyGraph object from this graph

This will create a new PyGraph object from this graph. All edges in this graph will be created as undirected
edges in the new graph object. Do note that the node and edge weights/data payloads will be passed by
reference to the new PyGraph object.

Returns A new PyGraph object with an undirected edge for every directed edge in this graph

Return type PyGraph

update_edge(source, target, /, edge)
Update an edge’s weight/payload inplace

If there are parallel edges in the graph only one edge will be updated. if you need to update a specific edge
or need to ensure all parallel edges get updated you should use update_edge_by_index() instead.

Parameters

• source (int) – The index for the first node

• target (int) – The index for the second node

Raises NoEdgeBetweenNodes – When there is no edge between nodes

36 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

update_edge_by_index(source, target, /, edge)
Update an edge’s weight/payload by the edge index

Parameters

• edge_index (int) – The index for the edge

• edge (object) – The data payload/weight to update the edge with

Raises NoEdgeBetweenNodes – When there is no edge between nodes

weighted_edge_list()
Get edge list with weights

Returns a list of tuples of the form (source, target, weight) where source and target are the node
indices and weight is the payload of the edge.

Returns An edge list with weights

Return type WeightedEdgeList

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.1.3 retworkx.PyDAG

class PyDAG(check_cycle=False, multigraph=True, /)
A class for creating direct acyclic graphs.

PyDAG is just an alias of the PyDiGraph class and behaves identically to the PyDiGraph class and can be used
interchangably with PyDiGraph. It currently exists solely as a backwards compatibility alias for users of retworkx
from prior to the 0.4.0 release when there was no PyDiGraph class.

The PyDAG class is used to create a directed graph. It can be a multigraph (have multiple edges between nodes).
Each node and edge (although rarely used for edges) is indexed by an integer id. Additionally, each node and
edge contains an arbitrary Python object as a weight/data payload.

You can use the index for access to the data payload as in the following example:

import retworkx

graph = retworkx.PyDAG()
data_payload = "An arbitrary Python object"
node_index = graph.add_node(data_payload)
print("Node Index: %s" % node_index)
print(graph[node_index])

Node Index: 0
An arbitrary Python object

The PyDAG class implements the Python mapping protocol for nodes so in addition to access you can also update
the data payload with:

2.1. Graph Classes 37

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

import retworkx

graph = retworkx.PyDAG()
data_payload = "An arbitrary Python object"
node_index = graph.add_node(data_payload)
graph[node_index] = "New Payload"
print("Node Index: %s" % node_index)
print(graph[node_index])

Node Index: 0
New Payload

The PyDAG class has an option for real time cycle checking which can be used to ensure any edges added to the
graph does not introduce a cycle. By default the real time cycle checking feature is disabled for performance,
however you can enable it by setting the check_cycle attribute to True. For example:

import retworkx
dag = retworkx.PyDAG()
dag.check_cycle = True

or at object creation:

import retworkx
dag = retworkx.PyDAG(check_cycle=True)

With check_cycle set to true any calls to PyDAG.add_edge() will ensure that no cycles are added, en-
suring that the PyDAG class truly represents a directed acyclic graph. Do note that this cycle checking
on add_edge(), add_edges_from(), add_edges_from_no_data(), extend_from_edge_list(), and
extend_from_weighted_edge_list() comes with a performance penalty that grows as the graph does. If
you’re adding a node and edge at the same time, leveraging PyDAG.add_child() or PyDAG.add_parent()
will avoid this overhead.

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.
add_child(parent, obj, edge, /) Add a new child node to the graph.
add_edge(parent, child, edge, /) Add an edge between 2 nodes.
add_edges_from(obj_list, /) Add new edges to the dag.
add_edges_from_no_data(obj_list, /) Add new edges to the dag without python data.
add_node(obj, /) Add a new node to the graph.
add_nodes_from(obj_list, /) Add new nodes to the graph.
add_parent(child, obj, edge, /) Add a new parent node to the dag.
adj(node, /) Get the index and data for the neighbors of a node.
adj_direction(node, direction, /) Get the index and data for either the parent or children

of a node.
compose(other, node_map, /[, node_map_func, . . .]) Add another PyDiGraph object into this PyDiGraph
edge_list Get edge list
edges() Return a list of all edge data.

continues on next page

38 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

Table 6 – continued from previous page
extend_from_edge_list(edge_list, /) Extend graph from an edge list
extend_from_weighted_edge_list(edge_lsit, /) Extend graph from a weighted edge list
find_adjacent_node_by_edge(node, predicate,
/)

Find a target node with a specific edge

find_node_by_weight Find node within this graph given a specific weight
from_adjacency_matrix(matrix, /) Create a new PyDiGraph object from an adjacency

matrix
get_all_edge_data(node_a, node_b, /) Return the edge data for all the edges between 2

nodes.
get_edge_data(node_a, node_b, /) Return the edge data for an edge between 2 nodes.
get_node_data(node, /) Return the node data for a given node index
has_edge(node_a, node_b, /) Return True if there is an edge from node_a to

node_b.
in_degree(node, /) Get the degree of a node for inbound edges.
in_edges(node, /) Get the index and edge data for all parents of a node.
insert_node_on_in_edges(node, ref_node, /) Insert a node between a reference node and all its pre-

decessor nodes
insert_node_on_in_edges_multiple(node,
. . .)

Insert a node between a list of reference nodes and all
their predecessors

insert_node_on_out_edges(node, ref_node, /) Insert a node between a reference node and all its suc-
cessor nodes

insert_node_on_out_edges_multiple(node,
. . .)

Insert a node between a list of reference nodes and all
their successors

is_symmetric() Check if the graph is symmetric
merge_nodes(u, /, v) Merge two nodes in the graph.
neighbors(node, /) Get the neighbors (i.e.
node_indexes() Return a list of all node indexes.
nodes() Return a list of all node data.
out_degree(node, /) Get the degree of a node for outbound edges.
out_edges(node, /) Get the index and edge data for all children of a node.
predecessor_indices(node, /) Get the predecessor indices of a node.
predecessors(node, /) Return a list of all the node predecessor data.
read_edge_list(path, /[, comment, deliminator]) Read an edge list file and create a new PyDiGraph

object from the contents
remove_edge(parent, child, /) Remove an edge between 2 nodes.
remove_edge_from_index(edge, /) Remove an edge identified by the provided index
remove_edges_from(index_list, /) Remove edges from the graph.
remove_node(node, /) Remove a node from the graph.
remove_node_retain_edges(node, /[, . . .]) Remove a node from the graph and add edges from

all predecessors to all successors
remove_nodes_from(index_list, /) Remove nodes from the graph.
subgraph (nodes, /) Return a new PyDiGraph object for a subgraph of this

graph
successor_indices(node, /) Get the successor indices of a node.
successors(node, /) Return a list of all the node successor data.
to_dot([node_attr, edge_attr, graph_attr, . . .]) Generate a dot file from the graph
to_undirected() Generate a new PyGraph object from this graph
update_edge(source, target, /, edge) Update an edge’s weight/payload inplace
update_edge_by_index(source, target, /, edge) Update an edge’s weight/payload by the edge index
weighted_edge_list Get edge list with weights

2.1. Graph Classes 39

retworkx Documentation, Release 0.8.0

Attributes

check_cycle Whether cycle checking is enabled for the Di-
Graph/DAG.

multigraph Whether the graph is a multigraph (allows multiple
edges between nodes) or not

add_child(parent, obj, edge, /)
Add a new child node to the graph.

This will create a new node on the graph and add an edge from the parent to that new node.

Parameters

• parent (int) – The index for the parent node

• obj – The python object to attach to the node

• edge – The python object to attach to the edge

Returns The index of the newly created child node

Return type int

add_edge(parent, child, edge, /)
Add an edge between 2 nodes.

Use add_child() or add_parent() to create a node with an edge at the same time as an edge for better perfor-
mance. Using this method will enable adding duplicate edges between nodes if the check_cycle attribute
is set to True.

Parameters

• parent (int) – Index of the parent node

• child (int) – Index of the child node

• edge – The object to set as the data for the edge. It can be any python object.

Returns The edge index of the created edge

Return type int

Raises When the new edge will create a cycle

add_edges_from(obj_list, /)
Add new edges to the dag.

Parameters obj_list (list) – A list of tuples of the form (parent, child, obj) to attach
to the graph. parent and child are integer indexes describing where an edge should be
added, and obj is the python object for the edge data.

Returns A list of int indices of the newly created edges

Return type list

add_edges_from_no_data(obj_list, /)
Add new edges to the dag without python data.

Parameters obj_list (list) – A list of tuples of the form (parent, child) to attach to the
graph. parent and child are integer indexes describing where an edge should be added.
Unlike add_edges_from() there is no data payload and when the edge is created None will
be used.

40 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

Returns A list of int indices of the newly created edges

Return type list

add_node(obj, /)
Add a new node to the graph.

Parameters obj – The python object to attach to the node

Returns The index of the newly created node

Return type int

add_nodes_from(obj_list, /)
Add new nodes to the graph.

Parameters obj_list (list) – A list of python objects to attach to the graph as new nodes

Returns A list of int indices of the newly created nodes

Return type NodeIndices

add_parent(child, obj, edge, /)
Add a new parent node to the dag.

This create a new node on the dag and add an edge to the child from that new node

Parameters

• child (int) – The index of the child node

• obj – The python object to attach to the node

• edge – The python object to attach to the edge

Returns index The index of the newly created parent node

Return type int

adj(node, /)
Get the index and data for the neighbors of a node.

This will return a dictionary where the keys are the node indexes of the adjacent nodes (inbound or out-
bound) and the value is the edge dat objects between that adjacent node and the provided node. Note in the
case of a multigraph only one edge will be used, not all of the edges between two node.

Parameters node (int) – The index of the node to get the neighbors

Returns A dictionary where the keys are node indexes and the value is the edge data object for
all nodes that share an edge with the specified node.

Return type dict

adj_direction(node, direction, /)
Get the index and data for either the parent or children of a node.

This will return a dictionary where the keys are the node indexes of the adjacent nodes (inbound or outbound
as specified) and the value is the edge data objects for the edges between that adjacent node and the provided
node. Note in the case of a multigraph only one edge one edge will be used, not all of the edges between
two node.

Parameters

• node (int) – The index of the node to get the neighbors

• direction (bool) – The direction to use for finding nodes, True means inbound edges
and False means outbound edges.

2.1. Graph Classes 41

retworkx Documentation, Release 0.8.0

Returns A dictionary where the keys are node indexes and the value is the edge data object for
all nodes that share an edge with the specified node.

Return type dict

check_cycle
Whether cycle checking is enabled for the DiGraph/DAG.

If set to True adding new edges that would introduce a cycle will raise a DAGWouldCycle exception.

compose(other, node_map, /, node_map_func=None, edge_map_func=None)
Add another PyDiGraph object into this PyDiGraph

Parameters

• other (PyDiGraph) – The other PyDiGraph object to add onto this graph.

• node_map (dict) – A dictionary mapping node indexes from this PyDiGraph object to
node indexes in the other PyDiGraph object. The keys are a node index in this graph and
the value is a tuple of the node index in the other graph to add an edge to and the weight of
that edge. For example:

{
1: (2, "weight"),
2: (4, "weight2")

}

• node_map_func – An optional python callable that will take in a single node weight/data
object and return a new node weight/data object that will be used when adding an node
from other onto this graph.

• edge_map_func – An optional python callable that will take in a single edge weight/data
object and return a new edge weight/data object that will be used when adding an edge
from other onto this graph.

Returns new_node_ids: A dictionary mapping node index from the other PyDiGraph to the cor-
responding node index in this PyDAG after they’ve been combined

Return type dict

For example, start by building a graph:

import os
import tempfile

import pydot
from PIL import Image

import retworkx

Build first graph and visualize:
graph = retworkx.PyDiGraph()
node_a = graph.add_node('A')
node_b = graph.add_child(node_a, 'B', 'A to B')
node_c = graph.add_child(node_b, 'C', 'B to C')
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]
(continues on next page)

42 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

(continued from previous page)

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'graph.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

Then build a second one:

Build second graph and visualize:
other_graph = retworkx.PyDiGraph()
node_d = other_graph.add_node('D')
other_graph.add_child(node_d, 'E', 'D to E')
dot_str = other_graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'other_graph.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

2.1. Graph Classes 43

retworkx Documentation, Release 0.8.0

Finally compose the other_graph onto graph

node_map = {node_b: (node_d, 'B to D')}
graph.compose(other_graph, node_map)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'combined_graph.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

edge_list()
Get edge list

Returns a list of tuples of the form (source, target) where source and target are the node indices.

Returns An edge list with weights

Return type EdgeList

edges()
Return a list of all edge data.

Returns A list of all the edge data objects in the graph

Return type list

extend_from_edge_list(edge_list, /)
Extend graph from an edge list

44 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

This method differs from add_edges_from_no_data() in that it will add nodes if a node index is not
present in the edge list.

Parameters edge_list (list) – A list of tuples of the form (source, target) where source
and target are integer node indices. If the node index is not present in the graph, nodes will
be added (with a node weight of None) to that index.

extend_from_weighted_edge_list(edge_lsit, /)
Extend graph from a weighted edge list

This method differs from add_edges_from() in that it will add nodes if a node index is not present in the
edge list.

Parameters edge_list (list) – A list of tuples of the form (source, target, weight)
where source and target are integer node indices. If the node index is not present in the graph
nodes will be added (with a node weight of None) to that index.

find_adjacent_node_by_edge(node, predicate, /)
Find a target node with a specific edge

This method is used to find a target node that is a adjacent to a given node given an edge condition.

Parameters

• node (int) – The node to use as the source of the search

• predicate (callable) – A python callable that will take a single parameter, the edge
object, and will return a boolean if the edge matches or not

Returns The node object that has an edge to it from the provided node index which matches the
provided condition

find_node_by_weight()
Find node within this graph given a specific weight

This algorithm has a worst case of O(n) since it searches the node indices in order. If there is more than
one node in the graph with the same weight only the first match (by node index) will be returned.

Parameters obj – The weight to look for in the graph.

Returns the index of the first node in the graph that is equal to the weight. If no match is found
None will be returned.

Return type int

static from_adjacency_matrix(matrix, /)
Create a new PyDiGraph object from an adjacency matrix

This method can be used to construct a new PyDiGraph object from an input adjacency matrix. The node
weights will be the index from the matrix. The edge weights will be a float value of the value from the
matrix.

Parameters matrix (ndarray) – The input numpy array adjacency matrix to create a new
PyDiGraph object from. It must be a 2 dimensional array and be a float/np.float64
data type.

Returns A new graph object generated from the adjacency matrix

Return type PyDiGraph

get_all_edge_data(node_a, node_b, /)
Return the edge data for all the edges between 2 nodes.

Parameters

2.1. Graph Classes 45

retworkx Documentation, Release 0.8.0

• node_a (int) – The index for the first node

• node_b (int) – The index for the second node

Returns A list with all the data objects for the edges between nodes

Return type list

Raises NoEdgeBetweenNodes – When there is no edge between nodes

get_edge_data(node_a, node_b, /)
Return the edge data for an edge between 2 nodes.

Parameters

• node_a (int) – The index for the first node

• node_b (int) – The index for the second node

Returns The data object set for the edge

Raises NoEdgeBetweenNodes – When there is no edge between nodes

get_node_data(node, /)
Return the node data for a given node index

Parameters node (int) – The index for the node

Returns The data object set for that node

Raises IndexError – when an invalid node index is provided

has_edge(node_a, node_b, /)
Return True if there is an edge from node_a to node_b.

Parameters

• node_a (int) – The source node index to check for an edge

• node_b (int) – The destination node index to check for an edge

Returns True if there is an edge false if there is no edge

Return type bool

in_degree(node, /)
Get the degree of a node for inbound edges.

Parameters node (int) – The index of the node to find the inbound degree of

Returns The inbound degree for the specified node

Return type int

in_edges(node, /)
Get the index and edge data for all parents of a node.

This will return a list of tuples with the parent index the node index and the edge data. This can be used to
recreate add_edge() calls. :param int node: The index of the node to get the edges for

Parameters node (int) – The index of the node to get the edges for

Returns A list of tuples of the form: (parent_index, node_index, edge_data)`

Return type WeightedEdgeList

46 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

insert_node_on_in_edges(node, ref_node, /)
Insert a node between a reference node and all its predecessor nodes

This essentially iterates over all edges into the reference node specified in the ref_node parameter removes
those edges and then adds 2 edges, one from the predecessor of ref_node to node and the other from node
to ref_node. The edge payloads for the newly created edges are copied by reference from the original edge
that gets removed.

Parameters

• node (int) – The node index to insert between

• ref_node (int) – The reference node index to insert node between

insert_node_on_in_edges_multiple(node, ref_nodes, /)
Insert a node between a list of reference nodes and all their predecessors

This essentially iterates over all edges into the reference node specified in the ref_nodes parameter re-
moves those edges and then adds 2 edges, one from the predecessor of ref_node to node and the other
from node to ref_node. The edge payloads for the newly created edges are copied by reference from the
original edge that gets removed.

Parameters

• node (int) – The node index to insert between

• ref_node (int) – The reference node index to insert node between

insert_node_on_out_edges(node, ref_node, /)
Insert a node between a reference node and all its successor nodes

This essentially iterates over all edges out of the reference node specified in the ref_node parameter re-
moves those edges and then adds 2 edges, one from ref_node to node and the other from node to the
successor of ref_node. The edge payloads for the newly created edges are copied by reference from the
original edge that gets removed.

Parameters

• node (int) – The node index to insert between

• ref_node (int) – The reference node index to insert node between

insert_node_on_out_edges_multiple(node, ref_nodes, /)
Insert a node between a list of reference nodes and all their successors

This essentially iterates over all edges out of the reference node specified in the ref_node parameter re-
moves those edges and then adds 2 edges, one from ref_node to node and the other from node to the
successor of ref_node. The edge payloads for the newly created edges are copied by reference from the
original edge that gets removed.

Parameters

• node (int) – The node index to insert between

• ref_nodes (int) – The list of node indices to insert node between

is_symmetric()
Check if the graph is symmetric

Returns True if the graph is symmetric

Return type bool

merge_nodes(u, /, v)
Merge two nodes in the graph.

2.1. Graph Classes 47

retworkx Documentation, Release 0.8.0

If the nodes have equal weight objects then all the edges into and out of u will be added to v and u will be
removed from the graph. If the nodes don’t have equal weight objects then no changes will be made and no
error raised

Parameters

• u (int) – The source node that is going to be merged

• v (int) – The target node that is going to be the new node

multigraph
Whether the graph is a multigraph (allows multiple edges between nodes) or not

If set to False multiple edges between nodes are not allowed and calls that would add a parallel edge will
instead update the existing edge

neighbors(node, /)
Get the neighbors (i.e. successors) of a node.

This will return a list of neighbor node indices. This function is equivalent to successor_indices().

Parameters node (int) – The index of the node to get the neighbors of

Returns A list of the neighbor node indices

Return type NodeIndices

node_indexes()
Return a list of all node indexes.

Returns A list of all the node indexes in the graph

Return type NodeIndices

nodes()
Return a list of all node data.

Returns A list of all the node data objects in the graph

Return type list

out_degree(node, /)
Get the degree of a node for outbound edges.

Parameters node (int) – The index of the node to find the outbound degree of

Returns The outbound degree for the specified node

Return type int

out_edges(node, /)
Get the index and edge data for all children of a node.

This will return a list of tuples with the child index the node index and the edge data. This can be used to
recreate add_edge() calls.

Parameters node (int) – The index of the node to get the edges for

Returns out_edges A list of tuples of the form: `(node_index, child_index,
edge_data)`

Return type WeightedEdgeList

predecessor_indices(node, /)
Get the predecessor indices of a node.

This will return a list of the node indicies for the predecessors of a node

48 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

Parameters node (int) – The index of the node to get the predecessors of

Returns A list of the neighbor node indicies

Return type NodeIndices

predecessors(node, /)
Return a list of all the node predecessor data.

Parameters node (int) – The index for the node to get the predecessors for

Returns A list of the node data for all the parent neighbor nodes

Return type list

static read_edge_list(path, /, comment=None, deliminator=None)
Read an edge list file and create a new PyDiGraph object from the contents

The expected format for the edge list file is a line seperated list of deliminated node ids. If there are more
than 3 elements on a line the 3rd on will be treated as a string weight for the edge

Parameters

• path (str) – The path of the file to open

• comment (str) – Optional character to use as a comment by default there are no comment
characters

• deliminator (str) – Optional character to use as a deliminator by default any whitespace
will be used

For example:

import os
import tempfile

from PIL import Image
import pydot

import retworkx

with tempfile.NamedTemporaryFile('wt') as fd:
path = fd.name
fd.write('0 1\n')
fd.write('0 2\n')
fd.write('0 3\n')
fd.write('1 2\n')
fd.write('2 3\n')
fd.flush()
graph = retworkx.PyDiGraph.read_edge_list(path)

Draw graph
dot = pydot.graph_from_dot_data(graph.to_dot())[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)

(continues on next page)

2.1. Graph Classes 49

retworkx Documentation, Release 0.8.0

(continued from previous page)

os.remove(tmp_path)
image

remove_edge(parent, child, /)
Remove an edge between 2 nodes.

Note if there are multiple edges between the specified nodes only one will be removed.

Parameters

• parent (int) – The index for the parent node.

• child (int) – The index of the child node.

Raises NoEdgeBetweenNodes – If there are no edges between the nodes specified

remove_edge_from_index(edge, /)
Remove an edge identified by the provided index

Parameters edge (int) – The index of the edge to remove

remove_edges_from(index_list, /)
Remove edges from the graph.

Note if there are multiple edges between the specified nodes only one will be removed.

Parameters index_list (list) – A list of node index pairs to remove from the graph

remove_node(node, /)
Remove a node from the graph.

Parameters node (int) – The index of the node to remove. If the index is not present in the
graph it will be ignored and this function will have no effect.

remove_node_retain_edges(node, /, use_outgoing=None, condition=None)
Remove a node from the graph and add edges from all predecessors to all successors

50 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

By default the data/weight on edges into the removed node will be used for the retained edges.

Parameters

• node (int) – The index of the node to remove. If the index is not present in the graph it
will be ingored and this function willl have no effect.

• use_outgoing (bool) – If set to true the weight/data from the edge outgoing from node
will be used in the retained edge instead of the default weight/data from the incoming edge.

• condition – A callable that will be passed 2 edge weight/data objects, one from the in-
coming edge to node the other for the outgoing edge, and will return a bool on whether
an edge should be retained. For example setting this kwarg to:

lambda in_edge, out_edge: in_edge == out_edge

would only retain edges if the input edge to node had the same data payload as the outgoing
edge.

remove_nodes_from(index_list, /)
Remove nodes from the graph.

If a node index in the list is not present in the graph it will be ignored.

Parameters index_list (list) – A list of node indicies to remove from the the graph.

subgraph(nodes, /)
Return a new PyDiGraph object for a subgraph of this graph

Parameters nodes (list) – A list of node indices to generate the subgraph from. If a node index
is included that is not present in the graph it will silently be ignored.

Returns A new PyDiGraph object representing a subgraph of this graph. It is worth noting that
node and edge weight/data payloads are passed by reference so if you update (not replace) an
object used as the weight in graph or the subgraph it will also be updated in the other.

Return type PyGraph

successor_indices(node, /)
Get the successor indices of a node.

This will return a list of the node indicies for the succesors of a node

Parameters node (int) – The index of the node to get the successors of

Returns A list of the neighbor node indicies

Return type NodeIndices

successors(node, /)
Return a list of all the node successor data.

Parameters node (int) – The index for the node to get the successors for

Returns A list of the node data for all the child neighbor nodes

Return type list

to_dot(node_attr=None, edge_attr=None, graph_attr=None, filename=None)
Generate a dot file from the graph

Parameters

• node_attr – A callable that will take in a node data object and return a dictionary of
attributes to be associated with the node in the dot file. The key and value of this dictionary

2.1. Graph Classes 51

retworkx Documentation, Release 0.8.0

must be strings. If they’re not strings retworkx will raise TypeError (unfortunately without
an error message because of current limitations in the PyO3 type checking)

• edge_attr – A callable that will take in an edge data object and return a dictionary of
attributes to be associated with the node in the dot file. The key and value of this dictionary
must be a string. If they’re not strings retworkx will raise TypeError (unfortunately without
an error message because of current limitations in the PyO3 type checking)

• graph_attr (dict) – An optional dictionary that specifies any graph attributes for the
output dot file. The key and value of this dictionary must be a string. If they’re not strings
retworkx will raise TypeError (unfortunately without an error message because of current
limitations in the PyO3 type checking)

• filename (str) – An optional path to write the dot file to if specified there is no return
from the function

Returns A string with the dot file contents if filename is not specified.

Return type str

Using this method enables you to leverage graphviz to visualize a retworkx.PyDiGraph object. For
example:

import os
import tempfile

import pydot
from PIL import Image

import retworkx

graph = retworkx.directed_gnp_random_graph(15, .25)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

52 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

to_undirected()
Generate a new PyGraph object from this graph

This will create a new PyGraph object from this graph. All edges in this graph will be created as undirected
edges in the new graph object. Do note that the node and edge weights/data payloads will be passed by
reference to the new PyGraph object.

Returns A new PyGraph object with an undirected edge for every directed edge in this graph

Return type PyGraph

update_edge(source, target, /, edge)
Update an edge’s weight/payload inplace

If there are parallel edges in the graph only one edge will be updated. if you need to update a specific edge
or need to ensure all parallel edges get updated you should use update_edge_by_index() instead.

Parameters

• source (int) – The index for the first node

2.1. Graph Classes 53

retworkx Documentation, Release 0.8.0

• target (int) – The index for the second node

Raises NoEdgeBetweenNodes – When there is no edge between nodes

update_edge_by_index(source, target, /, edge)
Update an edge’s weight/payload by the edge index

Parameters

• edge_index (int) – The index for the edge

• edge (object) – The data payload/weight to update the edge with

Raises NoEdgeBetweenNodes – When there is no edge between nodes

weighted_edge_list()
Get edge list with weights

Returns a list of tuples of the form (source, target, weight) where source and target are the node
indices and weight is the payload of the edge.

Returns An edge list with weights

Return type WeightedEdgeList

2.2 Generators

retworkx.generators.cycle_graph ([num_nodes,
. . .])

Generate an undirected cycle graph

retworkx.generators.
directed_cycle_graph ([. . .])

Generate a cycle graph

retworkx.generators.path_graph ([num_nodes,
. . .])

Generate an undirected path graph

retworkx.generators.
directed_path_graph ([. . .])

Generate a directed path graph

retworkx.generators.star_graph ([num_nodes,
. . .])

Generate an undirected star graph

retworkx.generators.
directed_star_graph ([. . .])

Generate a directed star graph

retworkx.generators.mesh_graph ([num_nodes,
. . .])

Generate an undirected mesh graph where every node is
connected to every other

retworkx.generators.
directed_mesh_graph ([. . .])

Generate a directed mesh graph where every node is con-
nected to every other

retworkx.generators.grid_graph ([rows, cols,
. . .])

Generate an undirected grid graph.

retworkx.generators.
directed_grid_graph ([. . .])

Generate a directed grid graph. The edges propagate to-
wards right and

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

54 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

2.2.1 retworkx.generators.cycle_graph

cycle_graph(num_nodes=None, weights=None, multigraph=True, /)
Generate an undirected cycle graph

Parameters

• num_node (int) – The number of nodes to generate the graph with. Node weights will be
None if this is specified. If both num_node and weights are set this will be ignored and
weights will be used.

• weights (list) – A list of node weights, the first element in the list will be the center node
of the cycle graph. If both num_node and weights are set this will be ignored and weights
will be used.

• multigraph (bool) – When set to False the output PyGraph object will not be not be a
multigraph and won’t allow parallel edges to be added. Instead calls which would create a
parallel edge will update the existing edge.

Returns The generated cycle graph

Return type PyGraph

Raises IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.cycle_graph(5)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

2.2. Generators 55

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.2.2 retworkx.generators.directed_cycle_graph

directed_cycle_graph(num_nodes=None, weights=None, bidirectional=False, /)
Generate a cycle graph

Parameters

• num_node (int) – The number of nodes to generate the graph with. Node weights will be
None if this is specified. If both num_node and weights are set this will be ignored and
weights will be used.

• weights (list) – A list of node weights, the first element in the list will be the center node
of the cycle graph. If both num_node and weights are set this will be ignored and weights
will be used.

• bidirectional (bool) – Adds edges in both directions between two nodes if set to True.
Default value is False

Returns The generated cycle graph

Return type PyDiGraph

56 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Raises IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.directed_cycle_graph(5)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

2.2. Generators 57

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.2.3 retworkx.generators.path_graph

path_graph(num_nodes=None, weights=None, multigraph=True, /)
Generate an undirected path graph

Parameters

• num_node (int) – The number of nodes to generate the graph with. Node weights will be
None if this is specified. If both num_node and weights are set this will be ignored and
weights will be used.

• weights (list) – A list of node weights, the first element in the list will be the center node
of the path graph. If both num_node and weights are set this will be ignored and weights
will be used.

• multigraph (bool) – When set to False the output PyGraph object will not be not be a
multigraph and won’t allow parallel edges to be added. Instead calls which would create a
parallel edge will update the existing edge.

Returns The generated path graph

Return type PyGraph

Raises IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.path_graph(10)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

58 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

2.2. Generators 59

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.2.4 retworkx.generators.directed_path_graph

directed_path_graph(num_nodes=None, weights=None, bidirectional=False, /)
Generate a directed path graph

Parameters

• num_node (int) – The number of nodes to generate the graph with. Node weights will be
None if this is specified. If both num_node and weights are set this will be ignored and
weights will be used.

• weights (list) – A list of node weights, the first element in the list will be the center node
of the path graph. If both num_node and weights are set this will be ignored and weights
will be used.

• bidirectional (bool) – Adds edges in both directions between two nodes if set to True.
Default value is False

Returns The generated path graph

Return type PyDiGraph

Raises IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.directed_path_graph(10)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

60 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

2.2. Generators 61

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.2.5 retworkx.generators.star_graph

star_graph(num_nodes=None, weights=None, multigraph=True, /)
Generate an undirected star graph

Parameters

• num_node (int) – The number of nodes to generate the graph with. Node weights will be
None if this is specified. If both num_node and weights are set this will be ignored and
weights will be used.

• weights (list) – A list of node weights, the first element in the list will be the center node
of the star graph. If both num_node and weights are set this will be ignored and weights
will be used.

• multigraph (bool) – When set to False the output PyGraph object will not be not be a
multigraph and won’t allow parallel edges to be added. Instead calls which would create a
parallel edge will update the existing edge.

Returns The generated star graph

Return type PyGraph

Raises IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.star_graph(10)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

62 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.2.6 retworkx.generators.directed_star_graph

directed_star_graph(num_nodes=None, weights=None, inward=False, bidirectional=False, /)
Generate a directed star graph

Parameters

• num_node (int) – The number of nodes to generate the graph with. Node weights will be
None if this is specified. If both num_node and weights are set this will be ignored and
weights will be used.

• weights (list) – A list of node weights, the first element in the list will be the center node
of the star graph. If both num_node and weights are set this will be ignored and weights
will be used.

• bidirectional (bool) – Adds edges in both directions between two nodes if set to True.
Default value is False.

• inward (bool) – If set True the nodes will be directed towards the center node. This pa-
rameter is ignored if bidirectional is set to True.

Returns The generated star graph

Return type PyDiGraph

Raises IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.directed_star_graph(10)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
(continues on next page)

2.2. Generators 63

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

(continued from previous page)

tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.directed_star_graph(10, inward=True)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

64 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

2.2.7 retworkx.generators.mesh_graph

mesh_graph(num_nodes=None, weights=None, multigraph=True, /)
Generate an undirected mesh graph where every node is connected to every other

Parameters

• num_node (int) – The number of nodes to generate the graph with. Node weights will be
None if this is specified. If both num_node and weights are set this will be ignored and
weights will be used.

• weights (list) – A list of node weights. If both num_node and weights are set this will
be ignored and weights will be used.

• multigraph (bool) – When set to False the output PyGraph object will not be not be a
multigraph and won’t allow parallel edges to be added. Instead calls which would create a
parallel edge will update the existing edge.

Returns The generated mesh graph

Return type PyGraph

Raises IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.mesh_graph(4)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

2.2. Generators 65

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.2.8 retworkx.generators.directed_mesh_graph

directed_mesh_graph(num_nodes=None, weights=None, /)
Generate a directed mesh graph where every node is connected to every other

Parameters

• num_node (int) – The number of nodes to generate the graph with. Node weights will be
None if this is specified. If both num_node and weights are set this will be ignored and
weights will be used.

• weights (list) – A list of node weights. If both num_node and weights are set this will
be ignored and weights will be used.

Returns The generated mesh graph

Return type PyDiGraph

Raises IndexError – If neither num_nodes or weights are specified

import os
import tempfile

import pydot
from PIL import Image

(continues on next page)

66 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

(continued from previous page)

import retworkx.generators

graph = retworkx.generators.directed_mesh_graph(4)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.2. Generators 67

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

2.2.9 retworkx.generators.grid_graph

grid_graph(rows=None, cols=None, weights=None, multigraph=True, /)
Generate an undirected grid graph.

Parameters

• rows (int) – The number of rows to generate the graph with. If specified, cols also need to
be specified

• cols (list) – The number of rows to generate the graph with. If specified, rows also need
to be specified. rows*cols defines the number of nodes in the graph

• weights (list) – A list of node weights. Nodes are filled row wise. If rows and cols are not
specified, then a linear graph containing all the values in weights list is created. If number
of nodes(rows*cols) is less than length of weights list, the trailing weights are ignored. If
number of nodes(rows*cols) is greater than length of weights list, extra nodes with None
weight are appended.

• multigraph (bool) – When set to False the output PyGraph object will not be not be a
multigraph and won’t allow parallel edges to be added. Instead calls which would create a
parallel edge will update the existing edge.

Returns The generated grid graph

Return type PyGraph

Raises IndexError – If neither rows or cols and weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.grid_graph(2, 3)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

68 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.2.10 retworkx.generators.directed_grid_graph

directed_grid_graph(rows=None, cols=None, weights=None, bidirectional=False, /)

Generate a directed grid graph. The edges propagate towards right and bottom direction if
bidirectional is false

Parameters

• rows (int) – The number of rows to generate the graph with. If specified, cols also need to
be specified.

• cols (list) – The number of rows to generate the graph with. If specified, rows also need
to be specified. rows*cols defines the number of nodes in the graph.

• weights (list) – A list of node weights. Nodes are filled row wise. If rows and cols are not
specified, then a linear graph containing all the values in weights list is created. If number
of nodes(rows*cols) is less than length of weights list, the trailing weights are ignored. If
number of nodes(rows*cols) is greater than length of weights list, extra nodes with None
weight are appended.

• bidirectional – A parameter to indicate if edges should exist in both directions between
nodes

Returns The generated grid graph

2.2. Generators 69

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Return type PyDiGraph

Raises IndexError – If neither rows or cols and weights are specified

import os
import tempfile

import pydot
from PIL import Image

import retworkx.generators

graph = retworkx.generators.directed_grid_graph(2, 3)
dot_str = graph.to_dot(

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

70 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

2.3 Random Circuit Functions

retworkx.directed_gnp_random_graph (. . . [,
seed])

Return a 𝐺𝑛𝑝 directed random graph, also known as an
Erdős-Rényi graph or a binomial graph.

retworkx.undirected_gnp_random_graph (. . . [,
seed])

Return a 𝐺𝑛𝑝 random undirected graph, also known as
an Erdős-Rényi graph or a binomial graph.

retworkx.directed_gnm_random_graph (. . . [,
seed])

Return a 𝐺𝑛𝑚 of a directed graph

retworkx.undirected_gnm_random_graph (. . . [,
seed])

Return a 𝐺𝑛𝑚 of an undirected graph

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.3.1 retworkx.directed_gnp_random_graph

directed_gnp_random_graph(num_nodes, probability, seed=None, /)
Return a 𝐺𝑛𝑝 directed random graph, also known as an Erdős-Rényi graph or a binomial graph.

For number of nodes 𝑛 and probability 𝑝, the 𝐺𝑛,𝑝 graph algorithm creates 𝑛 nodes, and for all the 𝑛(𝑛 − 1)
possible edges, each edge is created independently with probability 𝑝. In general, for any probability 𝑝, the
expected number of edges returned is 𝑚 = 𝑝𝑛(𝑛 − 1). If 𝑝 = 0 or 𝑝 = 1, the returned graph is not random
and will always be an empty or a complete graph respectively. An empty graph has zero edges and a complete
directed graph has 𝑛(𝑛−1) edges. The run time is𝑂(𝑛+𝑚)where𝑚 is the expected number of edges mentioned
above. When 𝑝 = 0, run time always reduces to 𝑂(𝑛), as the lower bound. When 𝑝 = 1, run time always goes
to 𝑂(𝑛+ 𝑛(𝑛− 1)), as the upper bound. For other probabilities, this algorithm1 runs in 𝑂(𝑛+𝑚) time.

For 0 < 𝑝 < 1, the algorithm is based on the implementation of the networkx function
fast_gnp_random_graph2

Parameters

• num_nodes (int) – The number of nodes to create in the graph

• probability (float) – The probability of creating an edge between two nodes

• seed (int) – An optional seed to use for the random number generator

Returns A PyDiGraph object

Return type PyDiGraph

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

1 Vladimir Batagelj and Ulrik Brandes, “Efficient generation of large random networks”, Phys. Rev. E, 71, 036113, 2005.
2 https://github.com/networkx/networkx/blob/networkx-2.4/networkx/generators/random_graphs.py#L49-L120

2.3. Random Circuit Functions 71

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx
https://github.com/networkx/networkx/blob/networkx-2.4/networkx/generators/random_graphs.py#L49-L120

retworkx Documentation, Release 0.8.0

2.3.2 retworkx.undirected_gnp_random_graph

undirected_gnp_random_graph(num_nodes, probability, seed=None, /)
Return a 𝐺𝑛𝑝 random undirected graph, also known as an Erdős-Rényi graph or a binomial graph.

For number of nodes 𝑛 and probability 𝑝, the 𝐺𝑛,𝑝 graph algorithm creates 𝑛 nodes, and for all the 𝑛(𝑛− 1)/2
possible edges, each edge is created independently with probability 𝑝. In general, for any probability 𝑝, the
expected number of edges returned is 𝑚 = 𝑝𝑛(𝑛 − 1)/2. If 𝑝 = 0 or 𝑝 = 1, the returned graph is not random
and will always be an empty or a complete graph respectively. An empty graph has zero edges and a complete
undirected graph has 𝑛(𝑛 − 1)/2 edges. The run time is 𝑂(𝑛 +𝑚) where 𝑚 is the expected number of edges
mentioned above. When 𝑝 = 0, run time always reduces to 𝑂(𝑛), as the lower bound. When 𝑝 = 1, run time
always goes to 𝑂(𝑛+𝑛(𝑛−1)/2), as the upper bound. For other probabilities, this algorithm1 runs in 𝑂(𝑛+𝑚)
time.

For 0 < 𝑝 < 1, the algorithm is based on the implementation of the networkx function
fast_gnp_random_graph2

Parameters

• num_nodes (int) – The number of nodes to create in the graph

• probability (float) – The probability of creating an edge between two nodes

• seed (int) – An optional seed to use for the random number generator

Returns A PyGraph object

Return type PyGraph

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.3.3 retworkx.directed_gnm_random_graph

directed_gnm_random_graph(num_nodes, num_edges, seed=None, /)
Return a 𝐺𝑛𝑚 of a directed graph

Generates a random directed graph out of all the possible graphs with 𝑛 nodes and 𝑚 edges. The generated graph
will not be a multigraph and will not have self loops.

For 𝑛 nodes, the maximum edges that can be returned is 𝑛(𝑛 − 1). Passing 𝑚 higher than that will still return
the maximum number of edges. If 𝑚 = 0, the returned graph will always be empty (no edges). When a seed
is provided, the results are reproducible. Passing a seed when 𝑚 = 0 or 𝑚 >= 𝑛(𝑛 − 1) has no effect, as the
result will always be an empty or a complete graph respectively.

This algorithm has a time complexity of 𝑂(𝑛+𝑚)

Parameters

• num_nodes (int) – The number of nodes to create in the graph

• num_edges (int) – The number of edges to create in the graph

• seed (int) – An optional seed to use for the random number generator
1 Vladimir Batagelj and Ulrik Brandes, “Efficient generation of large random networks”, Phys. Rev. E, 71, 036113, 2005.
2 https://github.com/networkx/networkx/blob/networkx-2.4/networkx/generators/random_graphs.py#L49-L120

72 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx
https://github.com/networkx/networkx/blob/networkx-2.4/networkx/generators/random_graphs.py#L49-L120

retworkx Documentation, Release 0.8.0

Returns A PyDiGraph object

Return type PyDiGraph

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.3.4 retworkx.undirected_gnm_random_graph

undirected_gnm_random_graph(num_nodes, probability, seed=None, /)
Return a 𝐺𝑛𝑚 of an undirected graph

Generates a random undirected graph out of all the possible graphs with 𝑛 nodes and 𝑚 edges. The generated
graph will not be a multigraph and will not have self loops.

For 𝑛 nodes, the maximum edges that can be returned is 𝑛(𝑛− 1)/2. Passing 𝑚 higher than that will still return
the maximum number of edges. If 𝑚 = 0, the returned graph will always be empty (no edges). When a seed is
provided, the results are reproducible. Passing a seed when 𝑚 = 0 or 𝑚 >= 𝑛(𝑛 − 1)/2 has no effect, as the
result will always be an empty or a complete graph respectively.

This algorithm has a time complexity of 𝑂(𝑛+𝑚)

Parameters

• num_nodes (int) – The number of nodes to create in the graph

• num_edges (int) – The number of edges to create in the graph

• seed (int) – An optional seed to use for the random number generator

Returns A PyGraph object

Return type PyGraph

2.4 Algorithm Functions

2.4.1 Specific Graph Type Methods

retworkx.bfs_successors(graph, node, /) Return successors in a breadth-first-search from a source
node.

retworkx.dag_longest_path (graph, /) Find the longest path in a DAG
retworkx.dag_longest_path_length (graph, /) Find the length of the longest path in a DAG
retworkx.number_weakly_connected_components(. . .)Find the number of weakly connected components in a

DAG.
retworkx.weakly_connected_components(graph,
/)

Find the weakly connected components in a directed
graph

retworkx.is_weakly_connected(graph, /) Check if the graph is weakly connected
retworkx.is_directed_acyclic_graph (graph, /) Check that the PyDiGraph or PyDAG doesn’t have a cy-

cle
retworkx.is_isomorphic(first, second, /) Determine if 2 graphs are structurally isomorphic

continues on next page

2.4. Algorithm Functions 73

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Table 10 – continued from previous page
retworkx.is_isomorphic_node_match (first, . . .) Determine if 2 DAGs are isomorphic
retworkx.topological_sort(graph, /) Return the topological sort of node indexes from the pro-

vided graph
retworkx.descendants(graph, node, /) Return the descendants of a node in a graph.
retworkx.ancestors(graph, node, /) Return the ancestors of a node in a graph.
retworkx.lexicographical_topological_sort(. . .)Get the lexicographical topological sorted nodes from

the provided DAG
retworkx.graph_distance_matrix(graph, /[, . . .]) Get the distance matrix for an undirected graph
retworkx.digraph_distance_matrix(graph, /[,
. . .])

Get the distance matrix for a directed graph

retworkx.floyd_warshall(dag, /) Return the shortest path lengths between ever pair of
nodes that has a path connecting them

retworkx.graph_floyd_warshall_numpy(graph, /) Find all-pairs shortest path lengths using Floyd’s algo-
rithm

retworkx.digraph_floyd_warshall_numpy Find all-pairs shortest path lengths using Floyd’s algo-
rithm

retworkx.collect_runs(graph, filter) Collect runs that match a filter function
retworkx.layers(dag, first_layer, /) Return a list of layers
retworkx.digraph_adjacency_matrix(graph, /) Return the adjacency matrix for a PyDiGraph object
retworkx.graph_adjacency_matrix(graph, /[, . . .]) Return the adjacency matrix for a PyGraph class
retworkx.graph_all_simple_paths Return all simple paths between 2 nodes in a PyGraph

object
retworkx.digraph_all_simple_paths Return all simple paths between 2 nodes in a PyDiGraph

object
retworkx.graph_astar_shortest_path (graph,
. . .)

Compute the A* shortest path for a PyGraph

retworkx.digraph_astar_shortest_path (graph,
. . .)

Compute the A* shortest path for a PyDiGraph

retworkx.graph_dijkstra_shortest_paths Find the shortest path from a node
retworkx.digraph_dijkstra_shortest_paths Find the shortest path from a node
retworkx.graph_dijkstra_shortest_path_lengths(. . .)Compute the lengths of the shortest paths for a PyGraph

object using Dijkstra’s algorithm
retworkx.digraph_dijkstra_shortest_path_lengths(. . .)Compute the lengths of the shortest paths for a PyDi-

Graph object using Dijkstra’s algorithm
retworkx.graph_k_shortest_path_lengths(. . .) Compute the length of the kth shortest path
retworkx.digraph_k_shortest_path_lengths(. . .) Compute the length of the kth shortest path
retworkx.graph_greedy_color(graph, /) Color a PyGraph using a largest_first strategy greedy

graph coloring.
retworkx.cycle_basis(graph, /[, root]) Return a list of cycles which form a basis for cycles of a

given PyGraph
retworkx.strongly_connected_components(graph,
/)

Compute the strongly connected components for a di-
rected graph

retworkx.graph_dfs_edges(graph, /[, source]) Get edge list in depth first order
retworkx.digraph_dfs_edges(graph, /[, source]) Get edge list in depth first order
retworkx.digraph_find_cycle(graph, /[, source]) Return the first cycle encountered during DFS of a given

PyDiGraph, empty list is returned if no cycle is found
retworkx.digraph_union(first, second, . . .) Return a new PyDiGraph by forming a union from two

input PyDiGraph objects
retworkx.is_matching(graph, matching, /) Check if matching is valid for graph
retworkx.is_maximal_matching(graph, matching,
/)

Check if a matching is a maximal (not maximum)
matching for a graph

continues on next page

74 Chapter 2. Retworkx API Reference

retworkx Documentation, Release 0.8.0

Table 10 – continued from previous page
retworkx.max_weight_matching(graph, /[, . . .]) Compute a maximum-weighted matching for a PyGraph

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.bfs_successors

bfs_successors(graph, node, /)
Return successors in a breadth-first-search from a source node.

The return format is [(Parent Node, [Children Nodes])] in a bfs order from the source node provided.

Parameters

• graph (PyDiGraph) – The DAG to get the bfs_successors from

• node (int) – The index of the dag node to get the bfs successors for

Returns A list of nodes’s data and their children in bfs order. The BFSSuccessors class that is re-
turned is a custom container class that implements the sequence protocol. This can be used as a
python list with index based access.

Return type BFSSuccessors

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.dag_longest_path

dag_longest_path(graph, /)
Find the longest path in a DAG

Parameters graph (PyDiGraph) – The graph to find the longest path on. The input object must be
a DAG without a cycle.

Returns The node indices of the longest path on the DAG

Return type NodeIndices

Raises

• Exception – If an unexpected error occurs or a path can’t be found

• DAGHasCycle – If the input PyDiGraph has a cycle

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.4. Algorithm Functions 75

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

retworkx.dag_longest_path_length

dag_longest_path_length(graph, /)
Find the length of the longest path in a DAG

Parameters graph (PyDiGraph) – The graph to find the longest path on. The input object must be
a DAG without a cycle.

Returns The longest path length on the DAG

Return type int

Raises

• Exception – If an unexpected error occurs or a path can’t be found

• DAGHasCycle – If the input PyDiGraph has a cycle

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.number_weakly_connected_components

number_weakly_connected_components(graph, /)
Find the number of weakly connected components in a DAG.

Parameters graph (PyDiGraph) – The graph to find the number of weakly connected components
on

Returns The number of weakly connected components in the DAG

Return type int

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.weakly_connected_components

weakly_connected_components(graph, /)
Find the weakly connected components in a directed graph

Parameters graph (PyDiGraph) – The graph to find the weakly connected components in

Returns A list of sets where each set it a weakly connected component of the graph

Return type list

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

76 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

These docs will no longer be updated.

retworkx.is_weakly_connected

is_weakly_connected(graph, /)
Check if the graph is weakly connected

Parameters graph (PyDiGraph) – The graph to check if it is weakly connected

Returns Whether the graph is weakly connected or not

Return type bool

Raises NullGraph – If an empty graph is passed in

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.is_directed_acyclic_graph

is_directed_acyclic_graph(graph, /)
Check that the PyDiGraph or PyDAG doesn’t have a cycle

Parameters graph (PyDiGraph) – The graph to check for cycles

Returns True if there are no cycles in the input graph, False if there are cycles

Return type bool

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.is_isomorphic

is_isomorphic(first, second, /)
Determine if 2 graphs are structurally isomorphic

This checks if 2 graphs are structurally isomorphic (it doesn’t match the contents of the nodes or edges on the
graphs).

Parameters

• first (PyDiGraph) – The first graph to compare

• second (PyDiGraph) – The second graph to compare

Returns True if the 2 graphs are structurally isomorphic, False if they are not

Return type bool

2.4. Algorithm Functions 77

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.is_isomorphic_node_match

is_isomorphic_node_match(first, second, matcher, /)
Determine if 2 DAGs are isomorphic

This checks if 2 graphs are isomorphic both structurally and also comparing the node data using the provided
matcher function. The matcher function takes in 2 node data objects and will compare them. A simple example
that checks if they’re just equal would be:

graph_a = retworkx.PyDAG()
graph_b = retworkx.PyDAG()
retworkx.is_isomorphic_node_match(graph_a, graph_b,

lambda x, y: x == y)

Parameters

• first (PyDiGraph) – The first graph to compare

• second (PyDiGraph) – The second graph to compare

• matcher (callable) – A python callable object that takes 2 positional one for each node
data object. If the return of this function evaluates to True then the nodes passed to it are
vieded as matching.

Returns True if the 2 graphs are isomorphic False if they are not.

Return type bool

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.topological_sort

topological_sort(graph, /)
Return the topological sort of node indexes from the provided graph

Parameters graph (PyDiGraph) – The DAG to get the topological sort on

Returns A list of node indices topologically sorted.

Return type NodeIndices

Raises DAGHasCycle – if a cycle is encountered while sorting the graph

78 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.descendants

descendants(graph, node, /)
Return the descendants of a node in a graph.

This differs from PyDiGraph.successors() method in that successors` returns only nodes with a direct
edge out of the provided node. While this function returns all nodes that have a path from the provided node.

Parameters

• graph (PyDiGraph) – The graph to get the descendants from

• node (int) – The index of the graph node to get the descendants for

Returns A list of node indexes of descendants of provided node.

Return type list

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.ancestors

ancestors(graph, node, /)
Return the ancestors of a node in a graph.

This differs from PyDiGraph.predecessors()method in that predecessors returns only nodes with a direct
edge into the provided node. While this function returns all nodes that have a path into the provided node.

Parameters

• graph (PyDiGraph) – The graph to get the descendants from

• node (int) – The index of the graph node to get the ancestors for

Returns A list of node indexes of ancestors of provided node.

Return type list

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.4. Algorithm Functions 79

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

retworkx.lexicographical_topological_sort

lexicographical_topological_sort(dag, key, /)
Get the lexicographical topological sorted nodes from the provided DAG

This function returns a list of nodes data in a graph lexicographically topologically sorted using the provided key
function.

Parameters

• dag (PyDiGraph) – The DAG to get the topological sorted nodes from

• key (callable) – key is a python function or other callable that gets passed a single argu-
ment the node data from the graph and is expected to return a string which will be used for
sorting.

Returns A list of node’s data lexicographically topologically sorted.

Return type list

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.graph_distance_matrix

graph_distance_matrix(graph, /, parallel_threshold=300)
Get the distance matrix for an undirected graph

This differs from functions like digraph_floyd_warshall_numpy in that the edge weight/data payload is not used
and each edge is treated as a distance of 1.

This function is also multithreaded and will run in parallel if the number of nodes in the graph is above the
value of paralllel_threshold (it defaults to 300). If the function will be running in parallel the env var
RAYON_NUM_THREADS can be used to adjust how many threads will be used.

Parameters

• graph (PyGraph) – The graph to get the distance matrix for

• parallel_threshold (int) – The number of nodes to calculate the the distance matrix in
parallel at. It defaults to 300, but this can be tuned

Returns The distance matrix

Return type numpy.ndarray

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

80 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

retworkx.digraph_distance_matrix

digraph_distance_matrix(graph, /, parallel_threshold=300, as_undirected=False)
Get the distance matrix for a directed graph

This differs from functions like digraph_floyd_warshall_numpy in that the edge weight/data payload is not used
and each edge is treated as a distance of 1.

This function is also multithreaded and will run in parallel if the number of nodes in the graph is above the
value of parallel_threshold (it defaults to 300). If the function will be running in parallel the env var
RAYON_NUM_THREADS can be used to adjust how many threads will be used.

Parameters

• graph (PyDiGraph) – The graph to get the distance matrix for

• parallel_threshold (int) – The number of nodes to calculate the the distance matrix in
parallel at. It defaults to 300, but this can be tuned

• as_undirected (bool) – If set to True the input directed graph will be treat as if each edge
was bidirectional/undirected in the output distance matrix.

Returns The distance matrix

Return type numpy.ndarray

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.floyd_warshall

floyd_warshall(dag, /)
Return the shortest path lengths between ever pair of nodes that has a path connecting them

The runtime is 𝑂(|𝑁 |3 + |𝐸|) where |𝑁 | is the number of nodes and |𝐸| is the number of edges.

This is done with the Floyd Warshall algorithm:

1. Process all edges by setting the distance from the parent to the child equal to the edge weight.

2. Iterate through every pair of nodes (source, target) and an additional itermediary node (w). If the distance
from source → w → target is less than the distance from source → target, update the source → target
distance (to pass through w).

The return format is {Source Node: {Target Node: Distance}}.

Note: Paths that do not exist are simply not found in the return dictionary, rather than setting the distance to
infinity, or -1.

Note: Edge weights are restricted to 1 in the current implementation.

Parameters graph (PyDigraph) – The DiGraph to get all shortest paths from

Returns A dictionary of shortest paths

2.4. Algorithm Functions 81

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Return type dict

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.graph_floyd_warshall_numpy

graph_floyd_warshall_numpy(graph, /, weight_fn=None, default_weight=1.0)
Find all-pairs shortest path lengths using Floyd’s algorithm

Floyd’s algorithm is used for finding shortest paths in dense graphs or graphs with negative weights (where
Dijkstra’s algorithm fails).

Parameters

• graph (PyGraph) – The graph to run Floyd’s algorithm on

• weight_fn – A callable object (function, lambda, etc) which will be passed the edge object
and expected to return a float. This tells retworkx/rust how to extract a numerical weight
as a float for edge object. Some simple examples are:

graph_floyd_warshall_numpy(graph, weight_fn: lambda x: 1)

to return a weight of 1 for all edges. Also:

graph_floyd_warshall_numpy(graph, weight_fn: lambda x: float(x))

to cast the edge object as a float as the weight.

Returns A matrix of shortest path distances between nodes. If there is no path between two nodes
then the corresponding matrix entry will be np.inf.

Return type numpy.ndarray

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.digraph_floyd_warshall_numpy

digraph_floyd_warshall_numpy()
Find all-pairs shortest path lengths using Floyd’s algorithm

Floyd’s algorithm is used for finding shortest paths in dense graphs or graphs with negative weights (where
Dijkstra’s algorithm fails).

Parameters

• graph (PyDiGraph) – The directed graph to run Floyd’s algorithm on

82 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

• weight_fn – A callable object (function, lambda, etc) which will be passed the edge object
and expected to return a float. This tells retworkx/rust how to extract a numerical weight
as a float for edge object. Some simple examples are:

graph_floyd_warshall_numpy(graph, weight_fn: lambda x: 1)

to return a weight of 1 for all edges. Also:

graph_floyd_warshall_numpy(graph, weight_fn: lambda x: float(x))

to cast the edge object as a float as the weight.

• as_undirected – If set to true each directed edge will be treated as bidirectional/undirected.

Returns A matrix of shortest path distances between nodes. If there is no path between two nodes
then the corresponding matrix entry will be np.inf.

Return type numpy.ndarray

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.collect_runs

collect_runs(graph, filter)
Collect runs that match a filter function

A run is a path of nodes where there is only a single successor and all nodes in the path match the given condition.
Each node in the graph can appear in only a single run.

Parameters

• graph (PyDiGraph) – The graph to find runs in

• filter_fn – The filter function to use for matching nodes. It takes in one argument, the
node data payload/weight object, and will return a boolean whether the node matches the
conditions or not. If it returns False it will skip that node.

Returns a list of runs, where each run is a list of node data payload/weight for the nodes in the run

Return type list

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.4. Algorithm Functions 83

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

retworkx.layers

layers(dag, first_layer, /)
Return a list of layers

A layer is a subgraph whose nodes are disjoint, i.e., a layer has depth 1. The layers are constructed using a greedy
algorithm.

Parameters

• graph (PyDiGraph) – The DAG to get the layers from

• first_layer (list) – A list of node ids for the first layer. This will be the first layer in the
output

Returns A list of layers, each layer is a list of node data

Return type list

Raises InvalidNode – If a node index in first_layer is not in the graph

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.digraph_adjacency_matrix

digraph_adjacency_matrix(graph, /, weight_fn=None, default_weight=1.0)
Return the adjacency matrix for a PyDiGraph object

In the case where there are multiple edges between nodes the value in the output matrix will be the sum of the
edges’ weights.

Parameters

• graph (PyDiGraph) – The DiGraph used to generate the adjacency matrix from

• weight_fn (callable) – A callable object (function, lambda, etc) which will be passed
the edge object and expected to return a float. This tells retworkx/rust how to extract a
numerical weight as a float for edge object. Some simple examples are:

dag_adjacency_matrix(dag, weight_fn: lambda x: 1)

to return a weight of 1 for all edges. Also:

dag_adjacency_matrix(dag, weight_fn: lambda x: float(x))

to cast the edge object as a float as the weight. If this is not specified a default value (either
default_weight or 1) will be used for all edges.

• default_weight (float) –

If weight_fn is not used this can be optionally used to specify a default weight to use for
all edges.

return The adjacency matrix for the input dag as a numpy array

rtype numpy.ndarray

84 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.graph_adjacency_matrix

graph_adjacency_matrix(graph, /, weight_fn=None, default_weight=1.0)
Return the adjacency matrix for a PyGraph class

In the case where there are multiple edges between nodes the value in the output matrix will be the sum of the
edges’ weights.

Parameters

• graph (PyGraph) – The graph used to generate the adjacency matrix from

• weight_fn – A callable object (function, lambda, etc) which will be passed the edge object
and expected to return a float. This tells retworkx/rust how to extract a numerical weight
as a float for edge object. Some simple examples are:

graph_adjacency_matrix(graph, weight_fn: lambda x: 1)

to return a weight of 1 for all edges. Also:

graph_adjacency_matrix(graph, weight_fn: lambda x: float(x))

to cast the edge object as a float as the weight. If this is not specified a default value (either
default_weight or 1) will be used for all edges.

• default_weight (float) – If weight_fn is not used this can be optionally used to specify
a default weight to use for all edges.

Returns The adjacency matrix for the input dag as a numpy array

Return type numpy.ndarray

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.graph_all_simple_paths

graph_all_simple_paths()
Return all simple paths between 2 nodes in a PyGraph object

A simple path is a path with no repeated nodes.

Parameters

• graph (PyGraph) – The graph to find the path in

• from (int) – The node index to find the paths from

• to (int) – The node index to find the paths to

2.4. Algorithm Functions 85

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

• min_depth (int) – The minimum depth of the path to include in the output list of paths. By
default all paths are included regardless of depth, setting to 0 will behave like the default.

• cutoff (int) – The maximum depth of path to include in the output list of paths. By default
includes all paths regardless of depth, setting to 0 will behave like default.

Returns A list of lists where each inner list is a path of node indices

Return type list

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.digraph_all_simple_paths

digraph_all_simple_paths()
Return all simple paths between 2 nodes in a PyDiGraph object

A simple path is a path with no repeated nodes.

Parameters

• graph (PyDiGraph) – The graph to find the path in

• from (int) – The node index to find the paths from

• to (int) – The node index to find the paths to

• min_depth (int) – The minimum depth of the path to include in the output list of paths.
By default all paths are included regardless of depth, sett to 0 will behave like the default.

• cutoff (int) – The maximum depth of path to include in the output list of paths. By default
includes all paths regardless of depth, setting to 0 will behave like default.

Returns A list of lists where each inner list is a path

Return type list

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.graph_astar_shortest_path

graph_astar_shortest_path(graph, node, goal_fn, edge_cost, estimate_cost, /)
Compute the A* shortest path for a PyGraph

Parameters

• graph (PyGraph) – The input graph to use

• node (int) – The node index to compute the path from

• goal_fn – A python callable that will take in 1 parameter, a node’s data object and will
return a boolean which will be True if it is the finish node.

86 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

• edge_cost_fn – A python callable that will take in 1 parameter, an edge’s data object and
will return a float that represents the cost of that edge. It must be non-negative.

• estimate_cost_fn – A python callable that will take in 1 parameter, a node’s data object
and will return a float which represents the estimated cost for the next node. The return must
be non-negative. For the algorithm to find the actual shortest path, it should be admissible,
meaning that it should never overestimate the actual cost to get to the nearest goal node.

Returns The computed shortest path between node and finish as a list of node indices.

Return type NodeIndices

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.digraph_astar_shortest_path

digraph_astar_shortest_path(graph, node, goal_fn, edge_cost, estimate_cost, /)
Compute the A* shortest path for a PyDiGraph

Parameters

• graph (PyDiGraph) – The input graph to use

• node (int) – The node index to compute the path from

• goal_fn – A python callable that will take in 1 parameter, a node’s data object and will
return a boolean which will be True if it is the finish node.

• edge_cost_fn – A python callable that will take in 1 parameter, an edge’s data object and
will return a float that represents the cost of that edge. It must be non-negative.

• estimate_cost_fn – A python callable that will take in 1 parameter, a node’s data object
and will return a float which represents the estimated cost for the next node. The return must
be non-negative. For the algorithm to find the actual shortest path, it should be admissible,
meaning that it should never overestimate the actual cost to get to the nearest goal node.

Returns The computed shortest path between node and finish as a list of node indices.

Return type NodeIndices

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.4. Algorithm Functions 87

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

retworkx.graph_dijkstra_shortest_paths

graph_dijkstra_shortest_paths()
Find the shortest path from a node

This function will generate the shortest path from a source node using Dijkstra’s algorithm.

Parameters

• graph (PyGraph) –

• source (int) – The node index to find paths from

• target (int) – An optional target to find a path to

• weight_fn – An optional weight function for an edge. It will accept a single argument, the
edge’s weight object and will return a float which will be used to represent the weight/cost
of the edge

• default_weight (float) – If weight_fn isn’t specified this optional float value will be
used for the weight/cost of each edge.

• as_undirected (bool) – If set to true the graph will be treated as undirected for finding
the shortest path.

Returns Dictionary of paths. The keys are destination node indices and the dict values are lists of
node indices making the path.

Return type dict

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.digraph_dijkstra_shortest_paths

digraph_dijkstra_shortest_paths()
Find the shortest path from a node

This function will generate the shortest path from a source node using Dijkstra’s algorithm.

Parameters

• graph (PyDiGraph) –

• source (int) – The node index to find paths from

• target (int) – An optional target path to find the path

• weight_fn – An optional weight function for an edge. It will accept a single argument, the
edge’s weight object and will return a float which will be used to represent the weight/cost
of the edge

• default_weight (float) – If weight_fn isn’t specified this optional float value will be
used for the weight/cost of each edge.

• as_undirected (bool) – If set to true the graph will be treated as undirected for finding
the shortest path.

88 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Returns Dictionary of paths. The keys are destination node indices and the dict values are lists of
node indices making the path.

Return type dict

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.graph_dijkstra_shortest_path_lengths

graph_dijkstra_shortest_path_lengths(graph, node, edge_cost_fn, /, goal=None)
Compute the lengths of the shortest paths for a PyGraph object using Dijkstra’s algorithm

Parameters

• graph (PyGraph) – The input graph to use

• node (int) – The node index to use as the source for finding the shortest paths from

• edge_cost_fn – A python callable that will take in 1 parameter, an edge’s data object and
will return a float that represents the cost/weight of that edge. It must be non-negative

• goal (int) – An optional node index to use as the end of the path. When specified the
traversal will stop when the goal is reached and the output dictionary will only have a single
entry with the length of the shortest path to the goal node.

Returns A dictionary of the shortest paths from the provided node where the key is the node index
of the end of the path and the value is the cost/sum of the weights of path

Return type dict

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.digraph_dijkstra_shortest_path_lengths

digraph_dijkstra_shortest_path_lengths(graph, node, edge_cost_fn, /, goal=None)
Compute the lengths of the shortest paths for a PyDiGraph object using Dijkstra’s algorithm

Parameters

• graph (PyDiGraph) – The input graph to use

• node (int) – The node index to use as the source for finding the shortest paths from

• edge_cost_fn – A python callable that will take in 1 parameter, an edge’s data object and
will return a float that represents the cost/weight of that edge. It must be non-negative

• goal (int) – An optional node index to use as the end of the path. When specified the
traversal will stop when the goal is reached and the output dictionary will only have a single
entry with the length of the shortest path to the goal node.

2.4. Algorithm Functions 89

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Returns A dictionary of the shortest paths from the provided node where the key is the node index
of the end of the path and the value is the cost/sum of the weights of path

Return type dict

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.graph_k_shortest_path_lengths

graph_k_shortest_path_lengths(graph, start, k, edge_cost, /, goal=None)
Compute the length of the kth shortest path

Computes the lengths of the kth shortest path from start to every reachable node.

Computes in 𝑂(𝑘 * (|𝐸|+ |𝑉 | * 𝑙𝑜𝑔(|𝑉 |))) time (average).

Parameters

• graph (PyGraph) – The graph to find the shortest paths in

• start (int) – The node index to find the shortest paths from

• k (int) – The kth shortest path to find the lengths of

• edge_cost – A python callable that will receive an edge payload and return a float for the
cost of that eedge

• goal (int) – An optional goal node index, if specified the output dictionary

Returns A dict of lengths where the key is the destination node index and the value is the length of
the path.

Return type dict

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.digraph_k_shortest_path_lengths

digraph_k_shortest_path_lengths(graph, start, k, edge_cost, /, goal=None)
Compute the length of the kth shortest path

Computes the lengths of the kth shortest path from start to every reachable node.

Computes in 𝑂(𝑘 * (|𝐸|+ |𝑉 | * 𝑙𝑜𝑔(|𝑉 |))) time (average).

Parameters

• graph (PyGraph) – The graph to find the shortest paths in

• start (int) – The node index to find the shortest paths from

• k (int) – The kth shortest path to find the lengths of

90 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

• edge_cost – A python callable that will receive an edge payload and return a float for the
cost of that eedge

• goal (int) – An optional goal node index, if specified the output dictionary

Returns A dict of lengths where the key is the destination node index and the value is the length of
the path.

Return type dict

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.graph_greedy_color

graph_greedy_color(graph, /)
Color a PyGraph using a largest_first strategy greedy graph coloring.

Parameters PyGraph – The input PyGraph object to color

Returns A dictionary where keys are node indices and the value is the color

Return type dict

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.cycle_basis

cycle_basis(graph, /, root=None)
Return a list of cycles which form a basis for cycles of a given PyGraph

A basis for cycles of a graph is a minimal collection of cycles such that any cycle in the graph can be written as
a sum of cycles in the basis. Here summation of cycles is defined as the exclusive or of the edges.

This is adapted from algorithm CACM 4911.

Parameters

• graph (PyGraph) – The graph to find the cycle basis in

• root (int) – Optional index for starting node for basis

Returns A list of cycle lists. Each list is a list of node ids which forms a cycle (loop) in the input
graph

Return type list

1 Paton, K. An algorithm for finding a fundamental set of cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518.

2.4. Algorithm Functions 91

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.strongly_connected_components

strongly_connected_components(graph, /)
Compute the strongly connected components for a directed graph

This function is implemented using Kosaraju’s algorithm

Parameters graph (PyDiGraph) – The input graph to find the strongly connected components for.

Returns A list of list of node ids for strongly connected components

Return type list

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.graph_dfs_edges

graph_dfs_edges(graph, /, source=None)
Get edge list in depth first order

Parameters

• graph (PyGraph) – The graph to get the DFS edge list from

• source (int) – An optional node index to use as the starting node for the depth-first search.
The edge list will only return edges in the components reachable from this index. If this is
not specified then a source will be chosen arbitrarly and repeated until all components of the
graph are searched.

Returns A list of edges as a tuple of the form (source, target) in depth-first order

Return type EdgeList

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

92 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

retworkx.digraph_dfs_edges

digraph_dfs_edges(graph, /, source=None)
Get edge list in depth first order

Parameters

• graph (PyDiGraph) – The graph to get the DFS edge list from

• source (int) – An optional node index to use as the starting node for the depth-first search.
The edge list will only return edges in the components reachable from this index. If this is
not specified then a source will be chosen arbitrarly and repeated until all components of the
graph are searched.

Returns A list of edges as a tuple of the form (source, target) in depth-first order

Return type EdgeList

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.digraph_find_cycle

digraph_find_cycle(graph, /, source=None)
Return the first cycle encountered during DFS of a given PyDiGraph, empty list is returned if no cycle is found

Parameters

• graph (PyDiGraph) – The graph to find the cycle in

• source (int) – Optional index to find a cycle for. If not specified an arbitrary node will be
selected from the graph.

Returns A list describing the cycle. The index of node ids which forms a cycle (loop) in the input
graph

Return type EdgeList

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.4. Algorithm Functions 93

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

retworkx.digraph_union

digraph_union(first, second, merge_nodes, merge_edges, /)
Return a new PyDiGraph by forming a union from two input PyDiGraph objects

The algorithm in this function operates in three phases:

1. Add all the nodes from second into first. operates in O(n), with n being number of nodes in
b.

2. Merge nodes from second over first given that:

• The merge_nodes is True. operates in O(n^2), with n being the number of nodes in second.

• The respective node in second and first share the same weight/data payload.

3. Adds all the edges from second to first. If the merge_edges parameter is True and the
respective edge in second and first`` share the same weight/data payload they will be merged
together.

param PyDiGraph first The first directed graph object

param PyDiGraph second The second directed graph object

param bool merge_nodes If set to True nodes will be merged between second and first
if the weights are equal.

param bool merge_edges If set to True edges will be merged between second and first
if the weights are equal.

returns A new PyDiGraph object that is the union of second and first. It’s worth noting
the weight/data payload objects are passed by reference from first and second to this
new object.

rtype PyDiGraph

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.is_matching

is_matching(graph, matching, /)
Check if matching is valid for graph

A matching in a graph is a set of edges in which no two distinct edges share a common endpoint.

Parameters

• graph (PyDiGraph) – The graph to check if the matching is valid for

• matching (set) – A set of node index tuples for each edge in the matching.

Returns Whether the provided matching is a valid matching for the graph

Return type bool

94 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.is_maximal_matching

is_maximal_matching(graph, matching, /)
Check if a matching is a maximal (not maximum) matching for a graph

A maximal matching in a graph is a matching in which adding any edge would cause the set to no longer be a
valid matching.

Note: This is not checking for a maximum (globally optimal) matching, but a maximal (locally optimal) match-
ing.

Parameters

• graph (PyDiGraph) – The graph to check if the matching is maximal for.

• matching (set) – A set of node index tuples for each edge in the matching.

Returns Whether the provided matching is a valid matching and whether it is maximal or not.

Return type bool

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.max_weight_matching

max_weight_matching(graph, /, max_cardinality=False, weight_fn=None, default_weight=1,
verify_optimum=False)

Compute a maximum-weighted matching for a PyGraph

A matching is a subset of edges in which no node occurs more than once. The weight of a matching is the sum
of the weights of its edges. A maximal matching cannot add more edges and still be a matching. The cardinality
of a matching is the number of matched edges.

This function takes time 𝑂(𝑛3) where n is the number of nodes in the graph.

This method is based on the “blossom” method for finding augmenting paths and the “primal-dual” method for
finding a matching of maximum weight, both methods invented by Jack Edmonds1.

Parameters

• graph (PyGraph) – The undirected graph to compute the max weight matching for. Expects
to have no parallel edges (multigraphs are untested currently).

1 “Efficient Algorithms for Finding Maximum Matching in Graphs”, Zvi Galil, ACM Computing Surveys, 1986.

2.4. Algorithm Functions 95

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

• max_cardinality (bool) – If True, compute the maximum-cardinality matching with
maximum weight among all maximum-cardinality matchings. Defaults False.

• weight_fn (callable) – An optional callable that will be passed a single argument the
edge object for each edge in the graph. It is expected to return an int weight for that edge.
For example, if the weights are all integers you can use: lambda x: x. If not specified the
value for default_weight will be used for all edge weights.

• default_weight (int) – The int value to use for all edge weights in the graph if
weight_fn is not specified. Defaults to 1.

• verify_optimum (bool) – A boolean flag to run a check that the found solution is optimum.
If set to true an exception will be raised if the found solution is not optimum. This is mostly
useful for testing.

Returns A set of tuples ofthe matching, Note that only a single direction will be listed in the output,
for example: {(0, 1),}.

Return type set

2.4.2 Universal Functions

These functions are algorithm functions that wrap per graph object type functions in the algorithms API but can be run
with a PyGraph , PyDiGraph , or PyDAG object.

retworkx.distance_matrix() Get the distance matrix for a graph
retworkx.floyd_warshall_numpy() Return the adjacency matrix for a graph object
retworkx.adjacency_matrix() Return the adjacency matrix for a graph object
retworkx.all_simple_paths() Return all simple paths between 2 nodes in a PyGraph

object
retworkx.astar_shortest_path () Compute the A* shortest path for a graph
retworkx.dijkstra_shortest_paths() Find the shortest path from a node
retworkx.dijkstra_shortest_path_lengths() Compute the lengths of the shortest paths for a graph

object using Dijkstra’s algorithm.
retworkx.k_shortest_path_lengths() Compute the length of the kth shortest path
retworkx.dfs_edges() Get edge list in depth first order

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.distance_matrix

distance_matrix(graph, parallel_threshold=300)
distance_matrix(graph: retworkx.PyDiGraph, parallel_threshold=300, as_undirected=False)
distance_matrix(graph: retworkx.PyGraph, parallel_threshold=300)

Get the distance matrix for a graph

This differs from functions like floyd_warshall_numpy() in that the edge weight/data payload is not used and
each edge is treated as a distance of 1.

This function is also multithreaded and will run in parallel if the number of nodes in the graph is above the

96 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

value of parallel_threshold (it defaults to 300). If the function will be running in parallel the env var
RAYON_NUM_THREADS can be used to adjust how many threads will be used.

Parameters

• graph – The graph to get the distance matrix for, can be either a PyGraph or PyDiGraph .

• parallel_threshold (int) – The number of nodes to calculate the the distance matrix in
parallel at. It defaults to 300, but this can be tuned

• as_undirected (bool) – If set to True the input directed graph will be treat as if each edge
was bidirectional/undirected in the output distance matrix.

Returns The distance matrix

Return type numpy.ndarray

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.floyd_warshall_numpy

floyd_warshall_numpy(graph, weight_fn=None, default_weight=1.0)
floyd_warshall_numpy(graph: retworkx.PyDiGraph, weight_fn=None, default_weight=1.0)
floyd_warshall_numpy(graph: retworkx.PyGraph, weight_fn=None, default_weight=1.0)

Return the adjacency matrix for a graph object

In the case where there are multiple edges between nodes the value in the output matrix will be the sum of the
edges’ weights.

Parameters

• graph – The graph used to generate the adjacency matrix from. Can either be a PyGraph
or PyDiGraph

• weight_fn (callable) – A callable object (function, lambda, etc) which will be passed
the edge object and expected to return a float. This tells retworkx/rust how to extract a
numerical weight as a float for edge object. Some simple examples are:

adjacency_matrix(graph, weight_fn: lambda x: 1)

to return a weight of 1 for all edges. Also:

adjacency_matrix(graph, weight_fn: lambda x: float(x))

to cast the edge object as a float as the weight. If this is not specified a default value (either
default_weight or 1) will be used for all edges.

• default_weight (float) –

If weight_fn is not used this can be optionally used to specify a default weight to use for
all edges.

return The adjacency matrix for the input dag as a numpy array

rtype numpy.ndarray

2.4. Algorithm Functions 97

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.adjacency_matrix

adjacency_matrix(graph, weight_fn=None, default_weight=1.0)
adjacency_matrix(graph: retworkx.PyDiGraph, weight_fn=None, default_weight=1.0)
adjacency_matrix(graph: retworkx.PyGraph, weight_fn=None, default_weight=1.0)

Return the adjacency matrix for a graph object

In the case where there are multiple edges between nodes the value in the output matrix will be the sum of the
edges’ weights.

Parameters

• graph – The graph used to generate the adjacency matrix from. Can either be a PyGraph
or PyDiGraph

• weight_fn (callable) – A callable object (function, lambda, etc) which will be passed
the edge object and expected to return a float. This tells retworkx/rust how to extract a
numerical weight as a float for edge object. Some simple examples are:

adjacency_matrix(graph, weight_fn: lambda x: 1)

to return a weight of 1 for all edges. Also:

adjacency_matrix(graph, weight_fn: lambda x: float(x))

to cast the edge object as a float as the weight. If this is not specified a default value (either
default_weight or 1) will be used for all edges.

• default_weight (float) –

If weight_fn is not used this can be optionally used to specify a default weight to use for
all edges.

return The adjacency matrix for the input dag as a numpy array

rtype numpy.ndarray

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

98 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

retworkx.all_simple_paths

all_simple_paths(graph, from_, to, min_depth=None, cutoff=None)
all_simple_paths(graph: retworkx.PyDiGraph, from_, to, min_depth=None, cutoff=None)
all_simple_paths(graph: retworkx.PyGraph, from_, to, min_depth=None, cutoff=None)

Return all simple paths between 2 nodes in a PyGraph object

A simple path is a path with no repeated nodes.

Parameters

• graph – The graph to find the path in. Can either be a class:~retworkx.PyGraph or
PyDiGraph

• from (int) – The node index to find the paths from

• to (int) – The node index to find the paths to

• min_depth (int) – The minimum depth of the path to include in the output list of paths. By
default all paths are included regardless of depth, setting to 0 will behave like the default.

• cutoff (int) – The maximum depth of path to include in the output list of paths. By default
includes all paths regardless of depth, setting to 0 will behave like default.

Returns A list of lists where each inner list is a path of node indices

Return type list

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.astar_shortest_path

astar_shortest_path(graph, node, goal_fn, edge_cost_fn, estimate_cost_fn)
astar_shortest_path(graph: retworkx.PyDiGraph, node, goal_fn, edge_cost_fn, estimate_cost_fn)
astar_shortest_path(graph: retworkx.PyGraph, node, goal_fn, edge_cost_fn, estimate_cost_fn)

Compute the A* shortest path for a graph

Parameters

• graph – The input graph to use. Can either be a PyGraph or PyDiGraph

• node (int) – The node index to compute the path from

• goal_fn – A python callable that will take in 1 parameter, a node’s data object and will
return a boolean which will be True if it is the finish node.

• edge_cost_fn – A python callable that will take in 1 parameter, an edge’s data object and
will return a float that represents the cost of that edge. It must be non-negative.

• estimate_cost_fn – A python callable that will take in 1 parameter, a node’s data object
and will return a float which represents the estimated cost for the next node. The return must
be non-negative. For the algorithm to find the actual shortest path, it should be admissible,
meaning that it should never overestimate the actual cost to get to the nearest goal node.

Returns The computed shortest path between node and finish as a list of node indices.

Return type NodeIndices

2.4. Algorithm Functions 99

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.dijkstra_shortest_paths

dijkstra_shortest_paths(graph, source, target=None, weight_fn=None, default_weight=1.0,
as_undirected=False)

dijkstra_shortest_paths(graph: retworkx.PyDiGraph, source, target=None, weight_fn=None,
default_weight=1.0, as_undirected=False)

dijkstra_shortest_paths(graph: retworkx.PyGraph, source, target=None, weight_fn=None,
default_weight=1.0)

Find the shortest path from a node

This function will generate the shortest path from a source node using Dijkstra’s algorithm.

Parameters

• graph – The input graph to use. Can either be a PyGraph or PyDiGraph

• source (int) – The node index to find paths from

• target (int) – An optional target to find a path to

• weight_fn – An optional weight function for an edge. It will accept a single argument, the
edge’s weight object and will return a float which will be used to represent the weight/cost
of the edge

• default_weight (float) – If weight_fn isn’t specified this optional float value will be
used for the weight/cost of each edge.

• as_undirected (bool) – If set to true the graph will be treated as undirected for finding
the shortest path. This only works with a PyDiGraph input for graph

Returns Dictionary of paths. The keys are destination node indices and the dict values are lists of
node indices making the path.

Return type dict

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

100 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

retworkx.dijkstra_shortest_path_lengths

dijkstra_shortest_path_lengths(graph, node, edge_cost_fn, goal=None)
dijkstra_shortest_path_lengths(graph: retworkx.PyDiGraph, node, edge_cost_fn, goal=None)
dijkstra_shortest_path_lengths(graph: retworkx.PyGraph, node, edge_cost_fn, goal=None)

Compute the lengths of the shortest paths for a graph object using Dijkstra’s algorithm.

Parameters

• graph – The input graph to use. Can either be a PyGraph or PyDiGraph

• node (int) – The node index to use as the source for finding the shortest paths from

• edge_cost_fn – A python callable that will take in 1 parameter, an edge’s data object and
will return a float that represents the cost/weight of that edge. It must be non-negative

• goal (int) – An optional node index to use as the end of the path. When specified the
traversal will stop when the goal is reached and the output dictionary will only have a single
entry with the length of the shortest path to the goal node.

Returns A dictionary of the shortest paths from the provided node where the key is the node index
of the end of the path and the value is the cost/sum of the weights of path

Return type dict

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.k_shortest_path_lengths

k_shortest_path_lengths(graph, start, k, edge_cost, goal=None)
k_shortest_path_lengths(graph: retworkx.PyDiGraph, start, k, edge_cost, goal=None)
k_shortest_path_lengths(graph: retworkx.PyGraph, start, k, edge_cost, goal=None)

Compute the length of the kth shortest path

Computes the lengths of the kth shortest path from start to every reachable node.

Computes in 𝑂(𝑘 * (|𝐸|+ |𝑉 | * 𝑙𝑜𝑔(|𝑉 |))) time (average).

Parameters

• graph – The graph to find the shortest paths in. Can either be a PyGraph or PyDiGraph

• start (int) – The node index to find the shortest paths from

• k (int) – The kth shortest path to find the lengths of

• edge_cost – A python callable that will receive an edge payload and return a float for the
cost of that eedge

• goal (int) – An optional goal node index, if specified the output dictionary

Returns A dict of lengths where the key is the destination node index and the value is the length of
the path.

Return type dict

2.4. Algorithm Functions 101

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

retworkx.dfs_edges

dfs_edges(graph, source)
dfs_edges(graph: retworkx.PyDiGraph, source)
dfs_edges(graph: retworkx.PyGraph, source)

Get edge list in depth first order

Parameters

• graph (PyGraph) – The graph to get the DFS edge list from

• source (int) – An optional node index to use as the starting node for the depth-first search.
The edge list will only return edges in the components reachable from this index. If this is
not specified then a source will be chosen arbitrarly and repeated until all components of the
graph are searched.

Returns A list of edges as a tuple of the form (source, target) in depth-first order

Return type EdgeList raise TypeError(“Invalid Input Type %s for graph” % type(graph))

2.5 Exceptions

retworkx.InvalidNode

retworkx.DAGWouldCycle

retworkx.NoEdgeBetweenNodes

retworkx.DAGHasCycle

retworkx.NoSuitableNeighbors

retworkx.NoPathFound

retworkx.NullGraph

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

102 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

2.5.1 retworkx.InvalidNode

exception InvalidNode

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.5.2 retworkx.DAGWouldCycle

exception DAGWouldCycle

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.5.3 retworkx.NoEdgeBetweenNodes

exception NoEdgeBetweenNodes

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.5. Exceptions 103

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

2.5.4 retworkx.DAGHasCycle

exception DAGHasCycle

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.5.5 retworkx.NoSuitableNeighbors

exception NoSuitableNeighbors

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.5.6 retworkx.NoPathFound

exception NoPathFound

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

104 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

2.5.7 retworkx.NullGraph

exception NullGraph

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

2.6 Return Iterator Types

retworkx.BFSSuccessors A custom class for the return from retworkx.
bfs_successors()

retworkx.NodeIndices A custom class for the return of node indices
retworkx.EdgeList A custom class for the return of edge lists
retworkx.WeightedEdgeList A custom class for the return of edge lists with weights

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.6.1 retworkx.BFSSuccessors

class BFSSuccessors
A custom class for the return from retworkx.bfs_successors()

This class is a container class for the results of the retworkx.bfs_successors() function. It implements the
Python sequence protocol. So you can treat the return as read-only sequence/list that is integer indexed. If you
want to use it as an iterator you can by wrapping it in an iter() that will yield the results in order.

For example:

import retworkx

graph = retworkx.generators.directed_path_graph(5)
bfs_succ = retworkx.bfs_successors(0)
Index based access
third_element = bfs_succ[2]
Use as iterator
bfs_iter = iter(bfs_succ)
first_element = next(bfs_iter)
second_element = nex(bfs_iter)

__init__()
Initialize self. See help(type(self)) for accurate signature.

2.6. Return Iterator Types 105

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

Methods

__init__() Initialize self.

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.6.2 retworkx.NodeIndices

class NodeIndices
A custom class for the return of node indices

This class is a container class for the results of functions that return a list of node indices. It implements the
Python sequence protocol. So you can treat the return as a read-only sequence/list that is integer indexed. If you
want to use it as an iterator you can by wrapping it in an iter() that will yield the results in order.

For example:

import retworkx

graph = retworkx.generators.directed_path_graph(5)
nodes = retworkx.node_indexes(0)
Index based access
third_element = nodes[2]
Use as iterator
nodes_iter = iter(node)
first_element = next(nodes_iter)
second_element = next(nodes_iter)

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

106 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx
https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

2.6.3 retworkx.EdgeList

class EdgeList
A custom class for the return of edge lists

This class is a container class for the results of functions that return a list of edges. It implements the Python
sequence protocol. So you can treat the return as a read-only sequence/list that is integer indexed. If you want to
use it as an iterator you can by wrapping it in an iter() that will yield the results in order.

For example:

import retworkx

graph = retworkx.generators.directed_path_graph(5)
edges = graph.edge_list()
Index based access
third_element = edges[2]
Use as iterator
edges_iter = iter(edges)
first_element = next(edges_iter)
second_element = next(edges_iter)

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

2.6.4 retworkx.WeightedEdgeList

class WeightedEdgeList
A custom class for the return of edge lists with weights

This class is a container class for the results of functions that return a list of edges with weights. It implements
the Python sequence protocol. So you can treat the return as a read-only sequence/list that is integer indexed. If
you want to use it as an iterator you can by wrapping it in an iter() that will yield the results in order.

For example:

import retworkx

graph = retworkx.generators.directed_path_graph(5)
edges = graph.weighted_edge_list()
Index based access
third_element = edges[2]

(continues on next page)

2.6. Return Iterator Types 107

https://qiskit.org/documentation/retworkx

retworkx Documentation, Release 0.8.0

(continued from previous page)

Use as iterator
edges_iter = iter(edges)
first_element = next(edges_iter)
second_element = next(edges_iter)

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

108 Chapter 2. Retworkx API Reference

https://qiskit.org/documentation/retworkx

CHAPTER

THREE

RELEASE NOTES

3.1 0.8.0

3.1.1 Prelude

This release includes several new features and bug fixes. The main features for this release are some usability im-
provements including the introduction of new methods for interacting with edges, constructing graphs from adjacency
matrices, and Universal Functions that are not strictly typed and will work with either a PyGraph or PyDiGraph object.
It also includes new algorithm functions around matchings for a PyGraph , including a function to find the maximum
weight matching. This is also the first release to include support and publishing of precompiled binaries for Apple Arm
CPUs on MacOS.

3.1.2 New Features

• A new constructor method from_adjacency_matrix() has been added to the PyDiGraph and PyGraph
(from_adjacency_matrix()) classes. It enables creating a new graph from an input adjacency_matrix. For
example:

import os
import tempfile

import numpy as np
import pydot
from PIL import Image

import retworkx

Adjacency matrix for directed outward star graph:
adjacency_matrix = np.array([

[0., 1., 1., 1., 1.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])

Create a graph from the adjacency_matrix:
graph = retworkx.PyDiGraph.from_adjacency_matrix(adjacency_matrix)
Draw graph
dot_str = graph.to_dot(

(continues on next page)

109

retworkx Documentation, Release 0.8.0

(continued from previous page)

lambda node: dict(
color='black', fillcolor='lightblue', style='filled'))

dot = pydot.graph_from_dot_data(dot_str)[0]
with tempfile.TemporaryDirectory() as tmpdirname:

tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

• A new algorithm function, is_matching(), was added to check if a matching set is valid for given PyGraph
object.

• A new algorithm function, is_maxmimal_matching(), was added to check if a matching set is valid and max-
imal for a given PyGraph object.

• Add a new function, max_weight_matching() for computing the maximum-weighted matching for a PyGraph
object.

• The PyGraph and PyDiGraph constructors now have a new kwarg multigraph which can optionally be set to
False to disallow adding parallel edges to the graph. With multigraph=False if an edge is attempted to be
added where one already exists it will update the weight for the edge with the new value. For example:

import os
import tempfile

import pydot
from PIL import Image

import retworkx as rx

graph = rx.PyGraph(multigraph=False)
graph.extend_from_weighted_edge_list([(0, 1, -1), (1, 2, 0), (2, 0, 1)])
dot = pydot.graph_from_dot_data(

graph.to_dot(edge_attr=lambda e:{'label': str(e)}))[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

110 Chapter 3. Release Notes

retworkx Documentation, Release 0.8.0

Then trying to add an edge between 0 and 1 again will update its weight/payload.

graph.add_edge(0, 1, 42)
dot = pydot.graph_from_dot_data(

graph.to_dot(edge_attr=lambda e:{'label': str(e)}))[0]

with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = os.path.join(tmpdirname, 'dag.png')
dot.write_png(tmp_path)
image = Image.open(tmp_path)
os.remove(tmp_path)

image

You can query whether a PyGraph allows multigraphs with the boolean attribute multigraph . The attribute
can not be set outside of the constructor.

• The retworkx.generators module’s functions cycle_graph(), path_graph(), star_graph(),

3.1. 0.8.0 111

retworkx Documentation, Release 0.8.0

mesh_graph(), and grid_graph() now have a new kwarg multigraph which takes a boolean and de-
faults to True. When it is set to False the generated PyGraph object will have the multigraph attribute set
to False meaning it will disallow adding parallel edges.

• New Universal Functions that can take in a PyGraph or PyDiGraph instead of being class specific have been to
the retworkx API. These new functions are:

– retworkx.distance_matrix()

– retworkx.floyd_warshall_numpy()

– retworkx.adjacency_matrix()

– retworkx.all_simple_paths()

– retworkx.astar_shortest_path()

– retworkx.dijkstra_shortest_paths()

– retworkx.dijkstra_shortest_path_lengths()

– retworkx.k_shortest_path_lengths()

– retworkx.dfs_edges()

• Starting with this release wheels will be published for macOS arm64. Only Python 3.9 is supported at first,
because it is the only version of Python with native support for arm64 macOS.

• The custom return types BFSSuccessors, NodeIndices, EdgeList, and WeightedEdgeList now implement
__str__ so that running str() (for example when calling print() on the object) it will return a human readable
string with the contents of the custom return type.

• The custom return types BFSSuccessors, NodeIndices, EdgeList, and WeightedEdgeList now implement
__hash__ so that running hash() (for example when insert them into a dict) will return a valid hash for the
object. The only exception to this is for BFSSuccessors and WeightedEdgeList if they contain a Python
object that is not hashable, in those cases calling hash() will raise a TypeError, just like as you called hash()
on the inner unhashable object.

• Two new methods, update_edge() and update_edge_by_index()were added to the retworkx.PyDiGraph
and retworkx.PyGraph (update_edge() and update_edge_by_index()) classes. These methods are used
to update the data payload/weight of an edge in the graph either by the nodes of an edge or by edge index.

3.1.3 Bug Fixes

• In previous releases the Python garbage collector did not know how to interact with PyDiGraph or PyGraph
objects and as a result they may never have been freed until Python exited. To fix this issue, the PyDiGraph and
PyGraph classes now are integrated with Python’s garbage collector so they’ll properly be cleared when there
are no more references to a graph object.

• The output from retworkx.PyDiGraph.neighbors() and retworkx.PyGraph.neighbors()methods will
no longer include duplicate entries in case of parallel edges between nodes. See #250 for more details.

• In previous releases the Python garbage collector did not know how to interact with the custom return types
BFSSuccessors, NodeIndices, EdgeList, and WeightedEdgeList and as a result they may never have been
freed until Python exited. To fix this issue the custom return type classes now are integrated with Python’s
garbage collector so they’ll properly be cleared when there are no more Python references to an object.

112 Chapter 3. Release Notes

https://github.com/Qiskit/retworkx/issues/250

retworkx Documentation, Release 0.8.0

3.2 0.7.2

3.2.1 Bug Fixes

• Fixed a potential segfault that could occur when calling is_directed_acyclic_graph() with a a very deep
PyDiGraph object as reported in Qiskit/qiskit-terra#5502.

3.2. 0.7.2 113

https://github.com/Qiskit/qiskit-terra/issues/5502

retworkx Documentation, Release 0.8.0

114 Chapter 3. Release Notes

CHAPTER

FOUR

0.7.1

This release includes a fix for an oversight in the previous 0.7.0 and 0.6.0 releases. Those releases both added custom
return types BFSSuccessors, NodeIndices, EdgeList, and WeightedEdgeList that implemented the Python se-
quence protocol which were used in place of lists for certain functions and methods. However, none of those classes
had support for being pickled, which was causing compatibility issues for users that were using the return in a context
where it would be pickled (for example as an argument to or return of a function called with multiprocessing). This
release has a single change over 0.7.0 which is to add the missing support for pickling BFSSuccessors, NodeIndices,
EdgeList, and WeightedEdgeList which fixes that issue.

115

retworkx Documentation, Release 0.8.0

116 Chapter 4. 0.7.1

CHAPTER

FIVE

0.7.0

This release includes several new features and bug fixes.

This release also dropped support for Python 3.5. If you want to use retworkx with Python 3.5 that last version which
supports Python 3.5 is 0.6.0.

5.1 New Features

• New generator functions for two new generator types, mesh and grid were added to retworkx.
generators for generating all to all and grid graphs respectively. These functions are: mesh_graph(),
directed_mesh_graph(), grid_graph(), and directed_grid_graph()

• A new function, retworkx.digraph_union(), for taking the union between two PyDiGraph objects has been
added.

• A new PyDiGraph method merge_nodes() has been added. This method can be used to merge 2 nodes in a
graph if they have the same weight/data payload.

• A new PyDiGraph method find_node_by_weight() which can be used to lookup a node index by a given
weight/data payload.

• A new return type NodeIndices has been added. This class is returned by functions and methods that return a
list of node indices. It implements the Python sequence protocol and can be used as list.

• Two new return types EdgeList and WeightedEdgeList. These classes are returned from functions and meth-
ods that return a list of edge tuples and a list of edge tuples with weights. They both implement the Python
sequence protocol and can be used as a list

• A new function collect_runs() has been added. This function is used to find linear paths of nodes that match
a given condition.

5.2 Upgrade Notes

• Support for running retworkx on Python 3.5 has been dropped. The last release with support for Python 3.5 is
0.6.0.

• The retworkx.PyDiGraph.node_indexes(), retworkx.PyDiGraph.neighbors(), retworkx.
PyDiGraph.successor_indices(), retworkx.PyDiGraph.predecessor_indices(), retworkx.
PyDiGraph.add_nodes_from(), retworkx.PyGraph.node_indexes(), retworkx.PyGraph.
add_nodes_from(), and retworkx.PyGraph.neighbors() methods and the dag_longest_path(),
topological_sort(), graph_astar_shortest_path(), and digraph_astar_shortest_path() func-
tions now return a NodeIndices object instead of a list of integers. This should not require any changes unless
explicit type checking for a list was used.

117

retworkx Documentation, Release 0.8.0

• The retworkx.PyDiGraph.edge_list(), and retworkx.PyGraph.edge_list() methods and
digraph_dfs_edges(), graph_dfs_edges(), and digraph_find_cycle() functions now return an
EdgeList object instead of a list of integers. This should not require any changes unless explicit type checking
for a list was used.

• The retworkx.PyDiGraph.weighted_edge_list(), retworkx.PyDiGraph.in_edges(), retworkx.
PyDiGraph.out_edges(), and retworkx.PyGraph.weighted_edge_list methods now return a
WeightedEdgeList object instead of a list of integers. This should not require any changes unless ex-
plicit type checking for a list was used.

5.3 Fixes

• BFSSuccessors objects now can be compared with == and != to any other Python sequence type.

• The built and published sdist packages for retworkx were previously not including the Cargo.lock file. This meant
that the reproducible build versions of the rust dependencies were not passed through to source. This has been
fixed so building from sdist will always use known working versions that we use for testing in CI.

118 Chapter 5. 0.7.0

CHAPTER

SIX

0.6.0

This release includes a number of new features and bug fixes. The main focus of this release was to expand the retworkx
API functionality to include some commonly needed functions that were missing.

This release is also the first release to provide full support for running with Python 3.9. On previous releases Python
3.9 would likely work, but it would require building retworkx from source. Also this will likely be the final release that
supports Python 3.5.

6.1 New Features

• Two new functions, digraph_k_shortest_path_lengths() and graph_k_shortest_path_lengths(),
for finding the k shortest path lengths from a node in a PyDiGraph and PyGraph .

• A new method, is_symmetric(), to the PyDiGraph class. This method will check whether the graph is sym-
metric or not

• A new kwarg, as_undirected, was added to the digraph_floyd_warshall_numpy() function. This can be
used to treat the input PyDiGraph object as if it was undirected for the generated output matrix.

• A new function, digraph_find_cycle(), which will return the first cycle during a depth first search of a
PyDiGraph object.

• Two new functions, directed_gnm_random_graph() and undirected_gnm_random_graph(), for generat-
ing random 𝐺(𝑛,𝑚) graphs.

• A new method, remove_edges_from(), was added to PyDiGraph and PyGraph (removed_edges_from()).
This can be used to remove multiple edges from a graph object in a single call.

• A new method, subgraph(), was added to PyDiGraph and PyGraph (subgraph()) which takes in a list of
node indices and will return a new object of the same type representing a subgraph containing the node indices
in that list.

• Support for running with Python 3.9

• A new method, to_undirected(), was added to PyDiGraph . This method will generate an undirected
PyGraph object from the PyDiGraph object.

• A new kwarg, bidirectional, was added to the directed generator functions directed_cycle_graph(),
directed_path_graph(), and directed_star_graph(). When set to True the directed graphs generated
by these functions will add edges in both directions.

• Added two new functions, is_weakly_connected() and weakly_connected_components(), which will
either check if a PyDiGraph object is weakly connected or return the list of the weakly connected components
of an input PyDiGraph .

119

retworkx Documentation, Release 0.8.0

• The weight_fn kwarg for graph_adjacency_matrix(), digraph_adjacency_matrix(),
graph_floyd_warshall_numpy(), and digraph_floyd_warshall_numpy() is now optional. Previ-
ously, it always had to be specified when calling these function. But, instead you can now rely on a default
weight float (which defaults to 1.0) to be used for all the edges in the graph.

• Add a neighbors() method to PyGraph and PyDiGraph (neighbors()). This function will return the node
indices of the neighbor nodes for a given input node.

• Two new methods, successor_indices() and predecessor_indices(), were added to PyDiGraph . These
methods will return the node indices for the successor and predecessor nodes of a given input node.

• Two new functions, graph_distance_matrix() and digraph_distance_matrix(), were added for gener-
ating a distance matrix from an input PyGraph and PyDiGraph .

• Two new functions, digraph_dijkstra_shortest_paths() and graph_dijkstra_shortest_path(),
were added for returning the shortest paths from a node in a PyDiGraph and a PyGraph object.

• Four new methods, insert_node_on_in_edges(), insert_node_on_out_edges(),
insert_node_on_in_edges_multiple(), and insert_node_on_out_edges_multiple() were added to
PyDiGraph . These functions are used to insert an existing node in between an reference node(s) and all it’s
predecessors or successors.

• Two new functions, graph_dfs_edges() and digraph_dfs_edges(), were added to get an edge list in depth
first order from a PyGraph and PyDiGraph .

6.2 Upgrade Notes

• The numpy arrays returned by graph_floyd_warshall_numpy(), digraph_floyd_warshall_numpy(),
digraph_adjacency_matrix(), and graph_adjacency_matrix() will now be in a contiguous C array
memory layout. Previously, they would return arrays in a column-major fortran layout. This was change was
made to make it easier to interface the arrays returned by these functions with other C Python extensions. There
should be no change when interacting with the numpy arrays via numpy’s API.

• The bfs_successors()method now returns an object of a custom type BFSSuccessors instead of a list. The
BFSSuccessors type implements the Python sequence protocol so it can be used in place like a list (except for
where explicit type checking is used). This was done to defer the type conversion between Rust and Python since
doing it all at once can be a performance bottleneck especially for large graphs. The BFSSuccessors class will
only do the type conversion when an element is accessed.

6.3 Fixes

• When pickling PyDiGraph objects the original node indices will be preserved across the pickle.

• The random 𝐺(𝑛, 𝑝) functions, directed_gnp_random_graph() and undirected_gnp_random_graph(),
will now also handle exact 0 or 1 probabilities. Previously it would fail in these cases. Fixes #172

120 Chapter 6. 0.6.0

https://github.com/Qiskit/retworkx/issues/172

CHAPTER

SEVEN

0.5.0

This release include a number of new features and bug fixes. The main focus of the improvements of this release was
to increase the ease of interacting with graph objects. This includes adding support for generating dot output which
can be used with graphviz (or similar tools) for visualizing graphs adding more methods to query the state of graph,
adding a generator module for easily creating graphs of certain shape, and implementing the mapping protocol so you
can directly interact with graph objects.

7.1 New Features

• A new method, to_dot(), was added to PyGraph and PyDiGraph (to_dot()). It will generate a dot format
representation of the object which can be used with Graphivz (or similar tooling) to generate visualizations of
graphs.

• Added a new function, strongly_connected_components(), to get the list of strongly connected components
of a PyDiGraph object.

• A new method, compose(), for composing another graph object of the same type into a graph was added to
PyGraph and PyDiGraph (compose()).

• The PyGraph and PyDigraph classes now implement the Python mapping protocol for interacting with graph
nodes. You can now access and interact with node data directly by using standard map access patterns in Python.
For example, accessing a graph like graph[1] will return the weight/data payload for the node at index 1.

• A new module, retworkx.generators, has been added. Functions in this module can be used for quickly
generating graphs of certain shape. To start it includes:

– retworkx.generators.cycle_graph()

– retworkx.generators.directed_cycle_graph()

– retworkx.generators.path_graph()

– retworkx.generators.directed_path_graph()

– retworkx.generators.star_graph()

– retworkx.generators.directed_star_graph()

• A new method, remove_node_retain_edges(), has been added to the PyDiGraph class. This method can be
used to remove a node and add edges from its predecesors to its successors.

• Two new methods, edge_list() and weighted_edge_list(), for getting a list of tuples with the edge source
and target (with or without edge weights) have been added to PyGraph and PyDiGraph (edge_list() and
weighted_edge_list())

• A new function, cycle_basis(), for getting a list of cycles which form a basis for cycles of a PyGraph object.

121

https://graphviz.org/doc/info/lang.html
https://graphviz.org/

retworkx Documentation, Release 0.8.0

• Two new functions, graph_floyd_warshall_numpy() and digraph_floyd_warshall_numpy(), were
added for running the Floyd Warshall algorithm and returning all the shortest path lengths as a distance ma-
trix.

• A new constructor method, read_edge_list(), has been added to PyGraph and PyDigraph
(read_edge_list()). This method will take in a path to an edge list file and will read that file and
generate a new object from the contents.

• Two new methods, extend_from_edge_list() and extend_from_weighted_edge_list() has been added
to PyGraph and PyDiGraph (extend_from_edge_list() and extend_from_weighted_edge_list()).
This method takes in an edge list and will add both the edges and nodes (if a node index used doesn’t exist
yet) in the list to the graph.

7.2 Fixes

• The limitation with the is_isomorphic() and is_isomorphic_node_match() functions that would cause
segfaults when comparing graphs with node removals has been fixed. You can now run either function with any
PyDiGraph /PyDAG objects, even if there are node removals. Fixes #27

• If an invalid node index was passed as part of the first_layer argument to the layers() function it would
previously raise a PanicException that included a Rust backtrace and no other user actionable details which
was caused by an unhandled error. This has been fixed so that an IndexError is raised and the problematic
node index is included in the exception message.

122 Chapter 7. 0.5.0

https://github.com/Qiskit/retworkx/issues/27

CHAPTER

EIGHT

0.4.0

This release includes many new features and fixes, including improved performance and better documentation. But,
the biggest change for this release is that this is the first release of retworkx that supports compilation with a stable
released version of rust. This was made possible thanks to all the hard work of the PyO3 maintainers and contributors
in the PyO3 0.11.0 release.

8.1 New Features

• A new class for undirected graphs, PyGraph , was added.

• 2 new functions graph_adjacency_matrix() and digraph_adjacency_matrix() to get the adjacency ma-
trix of a PyGraph and PyDiGraph object.

• A new PyDiGraph method, find_adjacent_node_by_edge(), was added. This is used to locate an adjacent
node given a condition based on the edge between them.

• New methods, add_nodes_from(), add_edges_from(), add_edges_from_no_data(), and
remove_nodes_from() were added to PyDiGraph . These methods allow for the addition (and removal) of
multiple nodes or edges from a graph in a single call.

• A new function, graph_greedy_color(), which is used to return a coloring map from a PyGraph object.

• 2 new functions, graph_astar_shortest_path() and digraph_astar_shortest_path(), to find the
shortest path from a node to a specified goal using the A* search algorithm.

• 2 new functions, graph_all_simple_paths() and digraph_all_simple_paths(), to return a list of all the
simple paths between 2 nodes in a PyGraph or a PyDiGraph object.

• 2 new functions, directed_gnp_random_graph() and undirected_gnp_random_graph(), to generate𝐺𝑛𝑝

random PyDiGraph and PyGraph objects.

• 2 new functions, graph_dijkstra_shortest_path_lengths() and digraph_dijkstra_shortest_path_lengths(),
were added for find the shortest path length between nodes in PyGraph or PyDiGraph object using Dijkstra’s
algorithm.

123

retworkx Documentation, Release 0.8.0

8.2 Upgrade Notes

• The PyDAG class was renamed PyDiGraph to better reflect it’s functionality. For backwards compatibility PyDAG
still exists as a Python subclass of PyDiGraph . No changes should be required for existing users.

• numpy is now a dependency of retworkx. This is used for the adjacency matrix functions to return numpy arrays.
The minimum version of numpy supported is 1.16.0.

8.3 Fixes

• The retworkx exception classes are now properly exported from the retworkx module. In prior releases it was
not possible to import the exception classes (normally to catch one being raised) requiring users to catch the base
Exception class. This has been fixed so a specialized retworkx exception class can be used.

124 Chapter 8. 0.4.0

https://numpy.org/

CHAPTER

NINE

CONTRIBUTING

First read the overall Qiskit project contribution guidelines. These are all included in the Qiskit documentation:

https://qiskit.org/documentation/contributing_to_qiskit.html

While it’s not all directly applicable since most of it is about the Qiskit project itself and retworkx is an independent
library developed in tandem with Qiskit; the general guidelines and advice still apply here.

9.1 Contributing to retworkx

In addition to the general guidelines there are specific details for contributing to retworkx, these are documented below.

9.1.1 Tests

Once you’ve made a code change, it is important to verify that your change does not break any existing tests and that
any new tests that you’ve added also run successfully. Before you open a new pull request for your change, you’ll want
to run the test suite locally.

The easiest way to run the test suite is to use **tox**. You can install tox with pip: pip install -U tox. Tox
provides several advantages, but the biggest one is that it builds an isolated virtualenv for running tests. This means it
does not pollute your system python when running.

Note, if you run tests outside of tox that you can not run the tests from the root of the repo, this is because retworkx
packaging shim will conflict with imports from retworkx the installed version of retworkx (which contains the compiled
extension).

9.1.2 Style

Rust

Rust is the primary language of retworkx and all the functional code in the libraries is written in Rust. The Rust code
in retworkx uses rustfmt to enforce consistent style. CI jobs are configured to ensure to check this. Luckily adapting
your code is as simple as running:

cargo fmt

locally. This will automatically restyle the rust code in retworkx to match what CI is checking.

125

https://qiskit.org/documentation/contributing_to_qiskit.html
https://tox.readthedocs.io/en/latest/
https://github.com/rust-lang/rustfmt

retworkx Documentation, Release 0.8.0

Lint

An additional step is to run clippy on your changes. While this is not run in CI (because it’s very dependent on the
rust/cargo version) it can often catch issues in your code. You can run it by running:

cargo clippy

Python

Python is used primarily for tests and some small pieces of packaging and namespace configuration code in the actual
library. flake8 is used to enforce consistent style in the python code in the repository. You can run it via tox using:

tox -elint

This will also run cargo fmt in check mode to ensure that you ran cargo fmt and will fail if the Rust code doesn’t
conform to the style rules.

9.1.3 Building documentation

Just like with tests building documentation is done via tox. This will handle compiling retworkx, installing the python
dependencies, and then building the documentation in an isolated venv. You can run just the docs build with:

tox -edocs

which will output the html rendered documentation in docs/build/htmlwhich you can view locally in a web browser.

9.1.4 Release Notes

It is important to document any end user facing changes when we release a new version of retworkx. The expectation is
that if your code contribution has user facing changes that you will write the release documentation for these changes.
This documentation must explain what was changed, why it was changed, and how users can either use or adapt to the
change. The idea behind release documentation is that when a naive user with limited internal knowledge of the project
is upgrading from the previous release to the new one, they should be able to read the release notes, understand if they
need to update their program which uses retworkx, and how they would go about doing that. It ideally should explain
why they need to make this change too, to provide the necessary context.

To make sure we don’t forget a release note or if the details of user facing changes over a release cycle we require that
all user facing changes include documentation at the same time as the code. To accomplish this we use the reno tool
which enables a git based workflow for writing and compiling release notes.

Adding a new release note

Making a new release note is quite straightforward. Ensure that you have reno installed with:

pip install -U reno

Once you have reno installed you can make a new release note by running in your local repository checkout’s root:

reno new short-description-string

126 Chapter 9. Contributing

https://github.com/rust-lang/rust-clippy
https://flake8.pycqa.org/en/latest/
https://docs.openstack.org/reno/latest/

retworkx Documentation, Release 0.8.0

where short-description-string is a brief string (with no spaces) that describes what’s in the release note. This will
become the prefix for the release note file. Once that is run it will create a new yaml file in releasenotes/notes. Then
open that yaml file in a text editor and write the release note. The basic structure of a release note is restructured text in
yaml lists under category keys. You add individual items under each category and they will be grouped automatically
by release when the release notes are compiled. A single file can have as many entries in it as needed, but to avoid
potential conflicts you’ll want to create a new file for each pull request that has user facing changes. When you open
the newly created file it will be a full template of the different categories with a description of a category as a single
entry in each category. You’ll want to delete all the sections you aren’t using and update the contents for those you are.
For example, the end result should look something like:

features:
- |
Added a new function, :func:`~retworkx.foo` that adds support for doing
something to :class:`~retworkx.PyDiGraph` objects.

- |
The :class:`~retworkx.PyDiGraph` class has a new method
:meth:`~retworkx.PyDiGraph.foo``. This is the equivalent of calling the
:func:`~retworkx.foo` function to do something to your
:class:`~retworkx.PyDiGraph` object, but provides the convenience of running
it natively on an object. For example::

from retworkx import PyDiGraph

g = PyDiGraph.
g.foo()

deprecations:
- |
The ``retworkx.bar`` function has been deprecated and will be removed in a
future release. It has been superseded by the
:meth:`~retworkx.PyDiGraph.foo` method and :func:`~retworkx.foo` function
which provides similar functionality but with more accurate results and
better performance. You should update your calls
``retworkx.bar()`` calls to use ``retworkx.foo()`` instead.

You can also look at other release notes for other examples.

You can use any sphinx feature in them (code sections, tables, enumerated lists, bulleted list, etc) to express what is
being changed as needed. In general you want the release notes to include as much detail as needed so that users will
understand what has changed, why it changed, and how they’ll have to update their code.

After you’ve finished writing your release notes you’ll want to add the note file to your commit with git add and
commit them to your PR branch to make sure they’re included with the code in your PR.

Linking to issues

If you need to link to an issue or other Github artifact as part of the release note this should be done using an inline
link with the text being the issue number. For example you would write a release note with a link to issue 12345 as:

fixes:
- |
Fixes a race condition in the function ``foo()``. Refer to
`#12345 <https://github.com/Qiskit/retworkx/issues/12345>`__ for more
details.

9.1. Contributing to retworkx 127

https://www.sphinx-doc.org/en/3.x/usage/restructuredtext/

retworkx Documentation, Release 0.8.0

Generating the release notes

After release notes have been added if you want to see what the full output of the release notes. Reno is used to combine
the release note yaml files into a single rst (ReStructuredText) document that sphinx will then compile for us as part
of the documentation builds. If you want to generate the rst file you use the reno report command. If you want to
generate the full retworkx release notes for all releases (since we started using reno during 0.8) you just run:

reno report

but you can also use the --version argument to view a single release (after it has been tagged:

reno report --version 0.8.0

Building release notes locally

Building the release notes is part of the standard retworkx documentation builds. To check what the rendered html
output of the release notes will look like for the current state of the repo you can run: tox -edocs which will build
all the documentation into docs/_build/html and the release notes in particular will be located at docs/_build/
html/release_notes.html

Warning: The documentation for retworkx has migrated to:

https://qiskit.org/documentation/retworkx

These docs will no longer be updated.

128 Chapter 9. Contributing

https://www.sphinx-doc.org/en/master/
https://qiskit.org/documentation/retworkx

CHAPTER

TEN

RETWORKX FOR NETWORKX USERS

This is an introductory guide for existing networkx users on how to use retworkx, how it differs from networkx, and
key differences to keep in mind.

10.1 Some Key Differences

retworkx (as the name implies) was inspired by networkx and the goal of the project is to provide a similar level of
functionality and utility to what networkx offers but with much faster performance. However, because of limitations in
the boundary between rust and python, different design decisions, and other differences the libraries are not identical.

The biggest difference to keep in mind is networkx is a very dynamic in how it can be used. It allows you to treat a
graph object associatively (like a python dictionary) and interact with the graph using the objects you’re putting on the
graph. For example:

import networkx as nx

graph = nx.MultiDiGraph()
graph.add_node('my_node_a')
graph.add_node('my_node_b')
graph.add_edge('my_node_a', 'my_node_b')

While retworkx being written in Rust puts more constraints on how you interact with graph objects. With retworkx you
can still attach any Python object on the a graph but each node and edge is assigned an integer index. That index must
be used for accessing nodes and edges on the graph. In retworkx the above example would be something like:

import retworkx as rx

graph = rx.PyDiGraph()
node_a = graph.add_node('my_node_a')
node_b = graph.add_node('my_node_b')
graph.add_edge(node_a, node_b, None)

where node_a == 0 and node_b == 1. These node indices can be used with a graph object to access the objects set as
the payload object via the python mapping protocol (not the sequence protocol because the indices are not guaranteed
to be a sequence after nodes or edges are removed from a graph). Continuing from the above retworkx example:

assert 'my_node_a' == graph[node_a]
assert 'my_node_b' == graph[node_b]

The use of integer indexes for everything is normally the biggest difference that existing networkx users have to adapt
to when migrating to retworkx.

129

retworkx Documentation, Release 0.8.0

Similarly when there are algorithm functions that operate on a node or edge data, callback functions are used in retworkx
to return statically typed data from node or edge payloads to use for various algorithms. In networkx this is typically
done using named attributes of nodes or edges (the typical example of a node or edge attribute named weight is used
by default for functions that need a numerical weight).

For example, in networkx:

import networkx as nx

graph = nx.MultiDiGraph()
graph.add_edges_from([(0, 1, {'weight': 1}), (0, 2, {'weight': 2}),

(1, 3, {'weight': 2}), (3, 0, {'weight': 3})])
dist_matrix = nx.floyd_warshall_numpy(graph, weight='weight')

while in retworkx you would use:

import retworkx as rx

graph = rx.PyDiGraph()
graph.extend_from weighted_edge_list(

[(0, 1, {'weight': 1}), (0, 2, {'weight': 2}),
(1, 3, {'weight': 2}), (3, 0, {'weight': 3})])

dist_matrix = rx.digraph_floyd_warshall_numpy(
graph, weight_fn=lambda edge: edge[weight])

or more concisely:

import retworkx as rx

graph = rx.PyDiGraph()
graph.extend_from weighted_edge_list(

[(0, 1, 1), (0, 2, 2),
(1, 3, 2), (3, 0, 3)])

dist_matrix = rx.digraph_floyd_warshall_numpy(graph,
weight_fn=lambda edge: edge)

The other large difference to keep in mind is that most functions in retworkx are explicitly typed. This means that they
either always return or accept either a PyDiGraph or a PyGraph but not both. The exception to this are the Universal
Functions which will dispatch to the statically typed equivalent based on the object they receive. This is different from
networkx where everything is pretty much dynamically typed and you can pass a graph object to any function and it
will work as expected (unless it isn’t supported and then it will raise an exception).

10.2 Graph Data and Attributes

10.2.1 Nodes

In networkx a node can be any hashable python object. That object is then used to access or refer to a node. Additionally,
you can set optional attributes on a node. This is described in more detail below.

In retworkx any python object (hashable or not) can be used as a node, however nodes can only be accessed by an
integer node index (which is returned by any function adding a node). There are no optional attributes for nodes. If
this is required that is expected to be added to the node’s data payload.

130 Chapter 10. retworkx for networkx users

retworkx Documentation, Release 0.8.0

10.2.2 Edges

Edges in networkx are accessible by the tuple of the nodes the edge is between. Edges only have optional attributes (as
described below) and no other object payload.

In retworkx any python object can be an edge and have a unique integer index assigned to it, just like nodes. However,
edges are in most functions/methods referenced by the tuple of the indices of the nodes the edge is between instead of
the edge’s index.

10.2.3 Attributes

networkx has a concept of graph, node, and edge attributes in addition to the hashable object used for a node’s payload.
Retworkx has no analogous concept. Instead, the payloads for nodes and edges are any python object (hashable or not).
This enables you to build similar structures to the attributes concept, but also use alternative structures specific to your
use case.

For example, something like:

import networkx as nx

graph = nx.Graph()
graph.add_node(1, time='5pm')
graph.add_nodes_from([3], time='2pm')
graph.nodes[1]['room'] = 714

can be accomplished by using a dict for node weights:

import retworkx as rx

graph = rx.PyGraph()
node_a = graph.add_node({'time': '5pm'})
node_b = graph.add_nodes_from([{'time': '2pm'}])
graph[node_a]['room'] = 714

10.2.4 Examining elements of a graph

networkx provides 4 attributes on graph objects nodes, edges, adj, and degree which act as set like views for the
nodes, edges, neighbors, and degrees of nodes respectively. These properties provide a real time view into the different
properties of the graphs and provide additional methods on those attributes for looking at graph properties in different
ways.

retworkx doesn’t offer views, but instead provides different accessor methods that return copies of the analogous data.
There are different functions/methods that offer different views on that data. For example, edge_list() is analogous
to networkx’s edges view and weighted_edge_list() is equivalent to networkx’s edges(data=True).

Additionally, since everything in retworkx is integer indexed, to access node data the PyDiGraph and PyGraph classes
implement the python mapping protocol so you can access node’s data using a node’s index.

10.2. Graph Data and Attributes 131

https://networkx.org/documentation/stable/tutorial.html#graph-attributes
https://networkx.org/documentation/stable/tutorial.html#node-attributes
https://networkx.org/documentation/stable/tutorial.html#edge-attributes

retworkx Documentation, Release 0.8.0

10.3 API Equivalents

10.3.1 Class Constructors

networkx retworkx Notes
Graph() PyGraph(multigraph=False)Only in multigraph flag added in retworkx>= 0.8.0 prior releases al-

ways allow multiple edges
DiGraph() PyDiGraph(multigraph=False)Only in multigraph flag added in retworkx>= 0.8.0 prior releases al-

ways allow multiple edges
MultiGraph() PyGraph()
MultiDiGraph()PyDiGraph()

The other thing to note here is that retworkx does not allow initialization of a graph when the constructor is called. You
will need to call an appropriate method of the object to add nodes or edges or use an alternative constructor method:

networkx retworkx Notes

Graph([(0, 1), (1, 0)]) graph = PyGraph()
graph.extend_from_edge_
→˓list([(0, 1), (1, 0)])

retworkx input must be a list of 2-
tuples, while networkx can be an it-
erator

Graph([(0, 1, {'weight': 2}
→˓), (1, 0, {'weight': 1}
→˓)])

graph = PyGraph()
graph.extend_from_edge_
→˓list([(0, 1, 2), (1, 0,␣
→˓1)])

retworkx input must be a list of 3-
tuples, while networkx can be an it-
erator

Graph(np.array([[0, 1, 1],␣
→˓[1, 0, 1], [1, 0, 1]]))

PyGraph.from_adjacency_
→˓matrix(np.array([[0, 1,␣
→˓1], [1, 0, 1], [1, 0,␣
→˓1]], dtype=np.float64))

retworkx
from_adjacency_matrix()
can only take a float dtype numpy
array, you can use .astype(np.
float64, copy=False) to adapt
a non-float array.

10.3.2 Graph Modifiers

net-
workx

retworkx Notes

add_node()add_node() retworkx returns a node index for the newly created node
add_nodes_fromadd_nodes_from() retworkx requires the input to be a list of objects and will return a list of

node indices for the newly created nodes
add_edgeadd_edge() retworkx requires 3 parameters be used, the 2 node indices and the payload

(networkx works with either 2 or 3)
add_edges_fromadd_edges_from(),

add_edges_from_no_data(),
extend_from_edge_list(),
extend_from_weighted_edge_list()

retworkx requires a list of either a 3 or 2 tuple (depending on whether
weights/data are expected or not). The difference between the ret-
workx extend_from* and add_edges_from* methods are that the
extend_from* will create new nodes with a weight/data payload of None
if any node indices are missing.

(note the retworkx version links to the PyDiGraph version, but there are also equivalent PyGraph methods available)

132 Chapter 10. retworkx for networkx users

retworkx Documentation, Release 0.8.0

10.4 Functionality Gaps

networkx is a mature library that has a wide user base and extensive feature set, while retworkx, by comparison, is a
much younger library and is missing a lot of the features that networkx offers. If you encounter a feature that networkx
offers which is missing from retworkx that you would like to use please open an “Enhancement request” issue at:
https://github.com/Qiskit/retworkx/issues/new/choose Once an issue is opened we can prioritize working on adding
an equivalent feature to retworkx.

10.4. Functionality Gaps 133

https://github.com/Qiskit/retworkx/issues/new/choose

retworkx Documentation, Release 0.8.0

134 Chapter 10. retworkx for networkx users

INDEX

Symbols
__init__() (BFSSuccessors method), 105
__init__() (EdgeList method), 107
__init__() (NodeIndices method), 106
__init__() (PyDAG method), 38
__init__() (PyDiGraph method), 21
__init__() (PyGraph method), 8
__init__() (WeightedEdgeList method), 108

A
add_child() (PyDAG method), 40
add_child() (PyDiGraph method), 22
add_edge() (PyDAG method), 40
add_edge() (PyDiGraph method), 22
add_edge() (PyGraph method), 9
add_edges_from() (PyDAG method), 40
add_edges_from() (PyDiGraph method), 23
add_edges_from() (PyGraph method), 9
add_edges_from_no_data() (PyDAG method), 40
add_edges_from_no_data() (PyDiGraph method), 23
add_edges_from_no_data() (PyGraph method), 9
add_node() (PyDAG method), 41
add_node() (PyDiGraph method), 23
add_node() (PyGraph method), 10
add_nodes_from() (PyDAG method), 41
add_nodes_from() (PyDiGraph method), 23
add_nodes_from() (PyGraph method), 10
add_parent() (PyDAG method), 41
add_parent() (PyDiGraph method), 23
adj() (PyDAG method), 41
adj() (PyDiGraph method), 24
adj() (PyGraph method), 10
adj_direction() (PyDAG method), 41
adj_direction() (PyDiGraph method), 24
adjacency_matrix() (in module retworkx), 98
all_simple_paths() (in module retworkx), 99
ancestors() (in module retworkx), 79
astar_shortest_path() (in module retworkx), 99

B
bfs_successors() (in module retworkx), 75
BFSSuccessors (class in retworkx), 105

C
check_cycle (PyDAG attribute), 42
check_cycle (PyDiGraph attribute), 24
collect_runs() (in module retworkx), 83
compose() (PyDAG method), 42
compose() (PyDiGraph method), 24
compose() (PyGraph method), 10
cycle_basis() (in module retworkx), 91
cycle_graph() (in module retworkx.generators), 55

D
dag_longest_path() (in module retworkx), 75
dag_longest_path_length() (in module retworkx), 76
DAGHasCycle, 104
DAGWouldCycle, 103
degree() (PyGraph method), 13
descendants() (in module retworkx), 79
dfs_edges() (in module retworkx), 102
digraph_adjacency_matrix() (in module retworkx),

84
digraph_all_simple_paths() (in module retworkx),

86
digraph_astar_shortest_path() (in module ret-

workx), 87
digraph_dfs_edges() (in module retworkx), 93
digraph_dijkstra_shortest_path_lengths() (in

module retworkx), 89
digraph_dijkstra_shortest_paths() (in module

retworkx), 88
digraph_distance_matrix() (in module retworkx), 81
digraph_find_cycle() (in module retworkx), 93
digraph_floyd_warshall_numpy() (in module ret-

workx), 82
digraph_k_shortest_path_lengths() (in module

retworkx), 90
digraph_union() (in module retworkx), 94
dijkstra_shortest_path_lengths() (in module ret-

workx), 101
dijkstra_shortest_paths() (in module retworkx),

100
directed_cycle_graph() (in module ret-

workx.generators), 56

135

retworkx Documentation, Release 0.8.0

directed_gnm_random_graph() (in module retworkx),
72

directed_gnp_random_graph() (in module retworkx),
71

directed_grid_graph() (in module ret-
workx.generators), 69

directed_mesh_graph() (in module ret-
workx.generators), 66

directed_path_graph() (in module ret-
workx.generators), 60

directed_star_graph() (in module ret-
workx.generators), 63

distance_matrix() (in module retworkx), 96

E
edge_list() (PyDAG method), 44
edge_list() (PyDiGraph method), 27
edge_list() (PyGraph method), 13
EdgeList (class in retworkx), 107
edges() (PyDAG method), 44
edges() (PyDiGraph method), 27
edges() (PyGraph method), 13
extend_from_edge_list() (PyDAG method), 44
extend_from_edge_list() (PyDiGraph method), 27
extend_from_edge_list() (PyGraph method), 13
extend_from_weighted_edge_list() (PyDAG

method), 45
extend_from_weighted_edge_list() (PyDiGraph

method), 27
extend_from_weighted_edge_list() (PyGraph

method), 13

F
find_adjacent_node_by_edge() (PyDAG method),

45
find_adjacent_node_by_edge() (PyDiGraph

method), 28
find_node_by_weight() (PyDAG method), 45
find_node_by_weight() (PyDiGraph method), 28
floyd_warshall() (in module retworkx), 81
floyd_warshall_numpy() (in module retworkx), 97
from_adjacency_matrix() (PyDAG static method), 45
from_adjacency_matrix() (PyDiGraph static

method), 28
from_adjacency_matrix() (PyGraph static method),

14

G
get_all_edge_data() (PyDAG method), 45
get_all_edge_data() (PyDiGraph method), 28
get_all_edge_data() (PyGraph method), 14
get_edge_data() (PyDAG method), 46
get_edge_data() (PyDiGraph method), 28
get_edge_data() (PyGraph method), 14

get_node_data() (PyDAG method), 46
get_node_data() (PyDiGraph method), 29
get_node_data() (PyGraph method), 14
graph_adjacency_matrix() (in module retworkx), 85
graph_all_simple_paths() (in module retworkx), 85
graph_astar_shortest_path() (in module retworkx),

86
graph_dfs_edges() (in module retworkx), 92
graph_dijkstra_shortest_path_lengths() (in

module retworkx), 89
graph_dijkstra_shortest_paths() (in module ret-

workx), 88
graph_distance_matrix() (in module retworkx), 80
graph_floyd_warshall_numpy() (in module ret-

workx), 82
graph_greedy_color() (in module retworkx), 91
graph_k_shortest_path_lengths() (in module ret-

workx), 90
grid_graph() (in module retworkx.generators), 68

H
has_edge() (PyDAG method), 46
has_edge() (PyDiGraph method), 29
has_edge() (PyGraph method), 15

I
in_degree() (PyDAG method), 46
in_degree() (PyDiGraph method), 29
in_edges() (PyDAG method), 46
in_edges() (PyDiGraph method), 29
insert_node_on_in_edges() (PyDAG method), 46
insert_node_on_in_edges() (PyDiGraph method),

29
insert_node_on_in_edges_multiple() (PyDAG

method), 47
insert_node_on_in_edges_multiple() (PyDi-

Graph method), 30
insert_node_on_out_edges() (PyDAG method), 47
insert_node_on_out_edges() (PyDiGraph method),

30
insert_node_on_out_edges_multiple() (PyDAG

method), 47
insert_node_on_out_edges_multiple() (PyDi-

Graph method), 30
InvalidNode, 103
is_directed_acyclic_graph() (in module retworkx),

77
is_isomorphic() (in module retworkx), 77
is_isomorphic_node_match() (in module retworkx),

78
is_matching() (in module retworkx), 94
is_maximal_matching() (in module retworkx), 95
is_symmetric() (PyDAG method), 47
is_symmetric() (PyDiGraph method), 30

136 Index

retworkx Documentation, Release 0.8.0

is_weakly_connected() (in module retworkx), 77

K
k_shortest_path_lengths() (in module retworkx),

101

L
layers() (in module retworkx), 84
lexicographical_topological_sort() (in module

retworkx), 80

M
max_weight_matching() (in module retworkx), 95
merge_nodes() (PyDAG method), 47
merge_nodes() (PyDiGraph method), 30
mesh_graph() (in module retworkx.generators), 65
multigraph (PyDAG attribute), 48
multigraph (PyDiGraph attribute), 30
multigraph (PyGraph attribute), 15

N
neighbors() (PyDAG method), 48
neighbors() (PyDiGraph method), 31
neighbors() (PyGraph method), 15
node_indexes() (PyDAG method), 48
node_indexes() (PyDiGraph method), 31
node_indexes() (PyGraph method), 15
NodeIndices (class in retworkx), 106
nodes() (PyDAG method), 48
nodes() (PyDiGraph method), 31
nodes() (PyGraph method), 15
NoEdgeBetweenNodes, 103
NoPathFound, 104
NoSuitableNeighbors, 104
NullGraph, 105
number_weakly_connected_components() (in mod-

ule retworkx), 76

O
out_degree() (PyDAG method), 48
out_degree() (PyDiGraph method), 31
out_edges() (PyDAG method), 48
out_edges() (PyDiGraph method), 31

P
path_graph() (in module retworkx.generators), 58
predecessor_indices() (PyDAG method), 48
predecessor_indices() (PyDiGraph method), 31
predecessors() (PyDAG method), 49
predecessors() (PyDiGraph method), 31
PyDAG (class in retworkx), 37
PyDiGraph (class in retworkx), 20
PyGraph (class in retworkx), 7

R
read_edge_list() (PyDAG static method), 49
read_edge_list() (PyDiGraph static method), 32
read_edge_list() (PyGraph static method), 15
remove_edge() (PyDAG method), 50
remove_edge() (PyDiGraph method), 33
remove_edge() (PyGraph method), 16
remove_edge_from_index() (PyDAG method), 50
remove_edge_from_index() (PyDiGraph method), 33
remove_edge_from_index() (PyGraph method), 17
remove_edges_from() (PyDAG method), 50
remove_edges_from() (PyDiGraph method), 33
remove_edges_from() (PyGraph method), 17
remove_node() (PyDAG method), 50
remove_node() (PyDiGraph method), 33
remove_node() (PyGraph method), 17
remove_node_retain_edges() (PyDAG method), 50
remove_node_retain_edges() (PyDiGraph method),

33
remove_nodes_from() (PyDAG method), 51
remove_nodes_from() (PyDiGraph method), 34
remove_nodes_from() (PyGraph method), 17

S
star_graph() (in module retworkx.generators), 62
strongly_connected_components() (in module ret-

workx), 92
subgraph() (PyDAG method), 51
subgraph() (PyDiGraph method), 34
subgraph() (PyGraph method), 17
successor_indices() (PyDAG method), 51
successor_indices() (PyDiGraph method), 34
successors() (PyDAG method), 51
successors() (PyDiGraph method), 34

T
to_dot() (PyDAG method), 51
to_dot() (PyDiGraph method), 34
to_dot() (PyGraph method), 17
to_undirected() (PyDAG method), 53
to_undirected() (PyDiGraph method), 36
topological_sort() (in module retworkx), 78

U
undirected_gnm_random_graph() (in module ret-

workx), 73
undirected_gnp_random_graph() (in module ret-

workx), 72
update_edge() (PyDAG method), 53
update_edge() (PyDiGraph method), 36
update_edge() (PyGraph method), 19
update_edge_by_index() (PyDAG method), 54
update_edge_by_index() (PyDiGraph method), 36

Index 137

retworkx Documentation, Release 0.8.0

update_edge_by_index() (PyGraph method), 19

W
weakly_connected_components() (in module ret-

workx), 76
weighted_edge_list() (PyDAG method), 54
weighted_edge_list() (PyDiGraph method), 37
weighted_edge_list() (PyGraph method), 19
WeightedEdgeList (class in retworkx), 107
with_traceback() (DAGHasCycle method), 104
with_traceback() (DAGWouldCycle method), 103
with_traceback() (InvalidNode method), 103
with_traceback() (NoEdgeBetweenNodes method),

103
with_traceback() (NoPathFound method), 104
with_traceback() (NoSuitableNeighbors method), 104
with_traceback() (NullGraph method), 105

138 Index

	retworkx
	Installing retworkx
	Installing on a platform without precompiled binaries

	Building from source
	Develop Mode

	Using retworkx

	Retworkx API Reference
	Graph Classes
	retworkx.PyGraph
	retworkx.PyDiGraph
	retworkx.PyDAG

	Generators
	retworkx.generators.cycle_graph
	retworkx.generators.directed_cycle_graph
	retworkx.generators.path_graph
	retworkx.generators.directed_path_graph
	retworkx.generators.star_graph
	retworkx.generators.directed_star_graph
	retworkx.generators.mesh_graph
	retworkx.generators.directed_mesh_graph
	retworkx.generators.grid_graph
	retworkx.generators.directed_grid_graph

	Random Circuit Functions
	retworkx.directed_gnp_random_graph
	retworkx.undirected_gnp_random_graph
	retworkx.directed_gnm_random_graph
	retworkx.undirected_gnm_random_graph

	Algorithm Functions
	Specific Graph Type Methods
	retworkx.bfs_successors
	retworkx.dag_longest_path
	retworkx.dag_longest_path_length
	retworkx.number_weakly_connected_components
	retworkx.weakly_connected_components
	retworkx.is_weakly_connected
	retworkx.is_directed_acyclic_graph
	retworkx.is_isomorphic
	retworkx.is_isomorphic_node_match
	retworkx.topological_sort
	retworkx.descendants
	retworkx.ancestors
	retworkx.lexicographical_topological_sort
	retworkx.graph_distance_matrix
	retworkx.digraph_distance_matrix
	retworkx.floyd_warshall
	retworkx.graph_floyd_warshall_numpy
	retworkx.digraph_floyd_warshall_numpy
	retworkx.collect_runs
	retworkx.layers
	retworkx.digraph_adjacency_matrix
	retworkx.graph_adjacency_matrix
	retworkx.graph_all_simple_paths
	retworkx.digraph_all_simple_paths
	retworkx.graph_astar_shortest_path
	retworkx.digraph_astar_shortest_path
	retworkx.graph_dijkstra_shortest_paths
	retworkx.digraph_dijkstra_shortest_paths
	retworkx.graph_dijkstra_shortest_path_lengths
	retworkx.digraph_dijkstra_shortest_path_lengths
	retworkx.graph_k_shortest_path_lengths
	retworkx.digraph_k_shortest_path_lengths
	retworkx.graph_greedy_color
	retworkx.cycle_basis
	retworkx.strongly_connected_components
	retworkx.graph_dfs_edges
	retworkx.digraph_dfs_edges
	retworkx.digraph_find_cycle
	retworkx.digraph_union
	retworkx.is_matching
	retworkx.is_maximal_matching
	retworkx.max_weight_matching

	Universal Functions
	retworkx.distance_matrix
	retworkx.floyd_warshall_numpy
	retworkx.adjacency_matrix
	retworkx.all_simple_paths
	retworkx.astar_shortest_path
	retworkx.dijkstra_shortest_paths
	retworkx.dijkstra_shortest_path_lengths
	retworkx.k_shortest_path_lengths
	retworkx.dfs_edges

	Exceptions
	retworkx.InvalidNode
	retworkx.DAGWouldCycle
	retworkx.NoEdgeBetweenNodes
	retworkx.DAGHasCycle
	retworkx.NoSuitableNeighbors
	retworkx.NoPathFound
	retworkx.NullGraph

	Return Iterator Types
	retworkx.BFSSuccessors
	retworkx.NodeIndices
	retworkx.EdgeList
	retworkx.WeightedEdgeList

	Release Notes
	0.8.0
	Prelude
	New Features
	Bug Fixes

	0.7.2
	Bug Fixes

	0.7.1
	0.7.0
	New Features
	Upgrade Notes
	Fixes

	0.6.0
	New Features
	Upgrade Notes
	Fixes

	0.5.0
	New Features
	Fixes

	0.4.0
	New Features
	Upgrade Notes
	Fixes

	Contributing
	Contributing to retworkx
	Tests
	Style
	Rust
	Lint

	Python

	Building documentation
	Release Notes
	Adding a new release note
	Linking to issues

	Generating the release notes
	Building release notes locally

	retworkx for networkx users
	Some Key Differences
	Graph Data and Attributes
	Nodes
	Edges
	Attributes
	Examining elements of a graph

	API Equivalents
	Class Constructors
	Graph Modifiers

	Functionality Gaps

	Index

